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ANSWERS
Chapter 1 – Sets
Exercise 1.1

a, b, c are true. d, e, f and g are false

Exercise 1.2

A, C, E are finite. n(A) = 8, n(C) = 1. B and D are infinite sets. 

Exercise 1.3

a, b, d, f and g are true. (“{2}” is the set containing the number 2, which is not the same as “2”.)

Exercise 1.4

a. A = {–1, 0, 1, 2, 3, 4}, B = {Thursday, Tuesday}, C = {–1, 1}, 

 D = {cube roots of unity} = {1, –  1 __ 2   +    √
__

 3   ___ 2  i , –  1 __ 2   –    √
__

 3   ___ 2  i}, E = ∅, the empty set,

 Since F is an infinite set, its elements cannot be listed. F = {x | 1 ≤ |x|}.

b.  2 ∈ A, F. 2 ∉ B, C, D, E.

c.  n(A) = 6, n(B) = 2, n(C) = 2, n(D) = 0, n(E) = 3.

Exercise 1.5

1.  ∅, {a}, {b}, {a, b}. 

2.  ∅, {1}, {3}, {7}, {1, 3}, {1, 7}, {3, 7}, {1, 3, 7}. 

3.  ∅, {1}, {3}, {7}, {1, 3}, {1, 7}, {3, 7}.

Exercise 1.6

A’ = {-7, 8, 11, 12}.

Exercise 1.7

1. Proof: A⋃(B∩A’)’ = A⋃(B’⋃A’’) = A⋃B’⋃A = A⋃B’

2. Proof ((A∩B)’⋃B)’ = (A∩B)’’∩B’ = (A∩B)∩B’ = A∩(B∩B’) = A∩∅ = ∅.
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Exercise 1.8

LHS = (A⋃B)\(A∩B) = A∆B; RHS = (A∩B’)⋃A’∩B) = (A\B)⋃(B\A) = A∆B = LHS: QED

Exercise 1.9

1. a. {a, b} b. {e} c. 2

 d. 1 e. {a, b, e} f. 3

 g. A h. {e, c, d} i. {c, d}

 j. {e}

2. {1, 3, 4, 5} has 24 = 16 subsets. Adding “2” to each of these sets gives all of the subsets of A 
with “2” as an element, hence the answer is 16.

3. A∩(A⋃B’)∩(B⋃A’)=A∩(B⋃A’)=(A∩B)⋃(A∩A’)=(A∩B)⋃∅=A∩B.

4. [(A⋃B)∩(A⋃B’)]⋃[(A’⋃B)∩(A’⋃B’)]

 =[(A⋃(B∩B’)]⋃[(A’⋃(B∩B’)]=[(A⋃∅]⋃[A’⋃∅]=A⋃A’=U.

5. [[A⋃(B∩C’)]∩[B⋃(A∩C’)]]’=[A⋃(B∩C’)]’⋃[B⋃(A∩C’)]’=[A’∩(B’⋃C’’)]⋃[B’∩(A’⋃C’’)]

 =[A’∩(B’⋃C)]⋃(B’∩(B’⋃A')]=[(A’∩B’)⋃(A’∩C)]⋃[(B’∩A’)⋃(B’∩C)]

 =(A’∩B’)⋃(A’∩C)⋃(B’∩A')⋃(B’∩C)= (A’∩B’)⋃(A’∩C)⋃(B’∩C).

6. A\(A∩B)=A∩(A∩B’)=A∩(A’⋃B’)=(A∩A’)⋃(A∩B’)=∅⋃ (A∩B’)=A∩B’=A\B.

7. No.

A B

C

A B

C

A             B\C

  

 Or use a counterexample. Let A = {a, b, c, d}, B = {c, d}, C = {c}

 B\C = {c}   A ∪ (B\ C) = {a, b, c, d}   (A ∪ B) \ C = {a, c}. So A ∪ (B\ C) ≠ (A ∪ B) \ C. 

8. Venn diagrams sugges that this is true: B∩(A\B) = B∩(A∩B’) = (B∩B’)∩A = ∅∩A = ∅
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9. (A∆B)⋃(A∩B)=(A\B)⋃(B\A)⋃(A∩B) = ((B\A))∪(A∩B)

 = [(A∪B)∩(A∪A’)∩(B’∪B)∩(B’∪A’)]∪(A∩B) = [(A∪B)∩U∩U∩(B’∪A’)]∪(A∩B)

 = [(A∪B)∩(B’∪A’)]∪(A∩B) = [(A∪B)∩(B∩A)’]∪(A∩B)=U∪(A∪B)= A⋃B.

10. A∆(A\B)=A∆(A∩B’) = [A\(A∩B’)]⋃[(A∩B’)\A]=[A∩(A∩B’)’]⋃[(A∩B’)∩A’]

 = [A∩(A⋃B’’)]⋃[(A∩A’)∩B’] = [A∩(A’⋃B)]⋃[∅∩B’]=[(A∩A’)⋃(A∩B)]⋃∅ = ∅⋃(A∩B)

 = A∩B

11. A∆(A∩B) = [A∪(A∩B]\) [A∩(A∩B]

 [A⋃(A∩B)]∩[(A∩A)∩B]’ = [A⋃(A∩B)]∩[A∩B]’=A∩[A∩B]’= A∩[A’⋃B’]

 = (A∩A’)⋃(A∩B’) = ∅⋃[A∩B’] = A∩B’ = A\B.

IB Exam Type Problems

1. We will show that A⊆B.

 Let x ∈ A

 x ∈ A ⋃ B   if x is in A, it must be in A ⋃ anything

 x ∈ A ∩ B   given

 x ∈ B    if x is in A∩B, it must be in B

 A ⊆ B

 We will show that B⊆A.

 Let x ∈ B

 x ∈ A ⋃ B   if x is in B, it must be in B ⋃ anything

 x ∈ A ∩ B   given

 x ∈ A   if x is in A∩B, it must be in A

 B ⊆ A

 Since A ⊆ B and B ⊆ A, A = B.
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2. The Venn diagrams are

BA BA

                                                A\B                                        B\A

 B∩(A\B) = ∅, but B∩(B\A) = B\A, so they are not equal

3.

A B

C

A B

C

A∪B                  C C∩A            C∩B

 C∩(A⋃B) is the doubly shaded region.     (C∩A)⋃(C∩B) is region with any shading.

The two regions are the same.

4.  a. ((X⋃Y) ∩ (X'⋃Y'))' = (X⋃Y)’ ⋃ (X'⋃Y')’= (X’∩Y’)⋃(X∩Y)

 b. LHS = A∩(B⋃C)’= A∩B’∩C’

 RHS = (A\B)∩(A\C)= (A∩B')∩(A∩C')= A∩B'∩C'

 LHS = RHS

 c. LHS = (A⋃B)∩(A⋃B) = RHS

 d. LHS = (A∩B)∩(A∩C)’= (A∩B)∩(A'⋃C’)= ((A∩B)∩A’)⋃ ((A∩B) ∩C’)

 = (A∩B∩A’)⋃(A∩B∩C’)= ∅⋃(A∩B∩C’)= A∩B∩C’ = A∩(B \ C) = RHS

 e. LHS = ((A⋃C)∩(A⋃B)')⋃((A⋃B)∩(A⋃C)')= ((A⋃C)∩(A’∩B’))⋃[(A⋃B)∩(A’∩C’)]

 =[(A∩(A'∩B')⋃(C∩(A'∩B')]⋃[(A∩(A’∩C’))⋃(B∩(A’∩C’)]

 =∅⋃(C∩(A'∩B')⋃∅⋃(B∩(A'∩C')=(A'∩B'∩C)⋃(A'∩B∩C') = RHS

 RHS = C∩(A⋃B)')⋃(B∩(A⋃C)' = (C∩(A'∩B'))⋃ (B∩(A'∩C')) = A'∩B'∩C)⋃(A'∩B∩C'.
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Exercise 2.1

1. a) 12R3, b) 3R12, c) 1R4, 1R1, 4R6, 5R6.

2. a) 0R4, b) 12R4, c) 4R4 and 4R-6, 0R12, -1R12.

3. a) (3, 4)R(0, 4), b) (3, 4)R(3, 4), c) R = {((3, 4), (3, 4)), ((0, 4)), (0, 4)), ((7, 23), (7, 23))} (0, 4)
R(7, 23), (0, 4)R(3, 4). 

4. a) 1R4, b) 4R56, c) 3R56, 1R3 and 4R3; 8R56, 8R4.

5. 1R3, 4R6 and 9R9.

6. –1R0,   1 ___ 
 √

__
 2  
   R   1 ___ 

 √
__

 2  
  ,   3 __ 5  R  4 __ 5   but 4R6, 4R  3 __ 5   and   1 ___ 

 √
__

 2  
   R  5 ___ 

 √
__

 3  
  .

Exercise 2.2

1. It is not symmetric since many counter examples can be given. One of them is 12 and 1. 1 is 
a divisor of 12 but 12 is not a divisor of 1.

2. It is symmetric since if m + n < 10 then n + m < 10 is also satisfied for every n, m ∈ C.

3. It is symmetric since if d + a = c + b then c + b = d + a for every (a, b), (c, d) ∈ D. 

4. It is symmetric since if gcd(a, b) ≠ 1 then gcd(b, a) ≠ 1 for every a, b ∈ E.

Exercise 2.3

1. It is transitive since if a is the same age as b and b is the same age as c, then a and c must be of 
the same age.

2. It is transitive since if a is at least as tall as b and b is at least as tall as c, then a is at least as tall 
as c.

3. It is transitive since if a lives in the same city as b and b lives in the same city as c, then a and c 
also live in the same city for every a, b, c ∈ H.

4. It is transitive. If c is a factor of b and b is a factor of a, then c is a factor of a, for all a, b, c ∈ B. 

5. It is not transitive. One counter example is 12R-6 and -6R4, but 12R4.

6. It is transitive. This is a bit hard to see, so let’s do algebra. Given (a, b)R(c, d) and (c, d)R(e, f), 
we must prove (a, b)R(e, f) for all (a, b), (c, d), (e, f) ∈ D. We are given that d + a = b + c (1) and 
that c + f = d + e (2).
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We must prove that a + f = b + e (3).

Adding (1) and (2) gives a + d + c + f = b + c + d + e.

Then subtracting d + c from both sides gives (3). 

7. It is not transitive. One counter example is 4R3 and 3R56, but 4R56.

Exercise 2.4

1. a.  It is reflexive since 1 + 1, 2 + 2, 3 + 3, 4 + 4 are all even. Therefore 1R1, 2R2, 3R3 and 4R4. It 
is symmetric since if x + y is even then y + x is even, too. Hence if xRy then yRx for every x, 
y∈A. It is transitive since if x + y is even and y + z is even then (x + y) + (y + z) and so x + z 
are even as well. We can conclude that if xRy and yRz then xRz for every x, y, z ∈ A.

b.  1 is in relation with 3 and 2 is in relation with 4. Hence there are two equivalence classes: 
{1, 3} and {2, 4}.

2. a)   It is not an equivalence relation, because it is not symmetric, because it contains (b, a) but 
not (a, b).

b.   It is reflexive because (1, 1), (2, 2), (3, 3), (4, 4), (5, 5) are all in R.

     It is symmetric because for all of the pairs (1, 2), (2, 1), (1, 3), (3, 1), and (2, 3), (3, 2), both 
members are in R.

     It is transitive. Unfortunately checking transitivity can be laborious. Since (1, 2) and (2, 3) 
are in R then (1, 3) must be too and it is. Also (1, 3) and (3, 1) requires (1, 1), check. (1, 3) 
and (3, 2) requires (1, 2), check, and so on. They are all there.

3.  It is sufficient to show that one of the three properties does not hold. It is not reflexive: 3R3 
since 3 = 3. (Symmetry is also ruled out because 4R3 but 3R4 and since 4 > 3 but 3 > 4. R is 
transitive.)  Remark: If the inequality is changed to ≥ then the relation is not an equivalence 
relation. It is reflexive and transitive but R is still not symmetric.

4. a.  R is reflexive since (x, y)R(x, y) holds for every (x, y) ∈ ℝ × ℝ since [x + y] = [x + y]. R is 
symmetric, since if [x + y] = [a + b] then [a + b] = [x + y]. R is transitive. If (x, y)R(a, b) and 
(a, b)R(c, d) then (x, y)R(c, d) as well for every (x, y), (a, b), (c, d) ∈ ℝ×ℝ, since if [x + y] = 
[a + b] and [a + b]= [c + d] , then [x + y] = [c + d]. Therefore it is an equivalence relation. 

b.  Let us choose two pairs of numbers (2.2, –1.6) and (–2, 2.7). Are they in relation? [2.2, 
–1.6]=0 and (–2, 2.7)=0, so (2.2, –1.6)R(–2, 2.7). Which (x, y) ∈ ℝ × ℝ are in relation with 
(2.2, –1.6)? We need (x, y) such that [x + y] = 0, that is 0 ≤ x + y < 1. 

 These are the points on the Cartesian plane which lie between the lines x + y = 0 (line 
included) and x + y = 1 (line excluded). 

 The points in the equivalence class with (2.2, –0.6) are the points on the Cartesian plane 
which lie between the lines x + y = 1 (line included) and x + y = 2 (line excluded).  
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 And so on. So the equivalence classes are the regions between adjacent parallel lines in the 
Cartesian coordinate system: x + y = n  (line included) and x + y = n + 1 (line excluded), 
n∈. One can see that these sets fill up the plane, and no point lies in more than one of the 
sets.

1 2–1–2

1

2

–1

–2

x

y

 The equivalence classes of (x, y)R(a, b) if [x + y] = [a + b] are diagonal bands.

5. We have to show that R is reflexive, symmetric and transitive. R is reflexive since a – a = 0 
and 0 is divisible by 2 for every a ∈ ℤ. R is symmetric since if a – b is divisible by 2 then b – 
a is divisible by 2, too. b – a = –(a – b) for every a, b ∈ ℤ. R is transitive since if aRb, that is 
a – b = 2n, n ∈  and bRc, that is b – c = 2m, m ∈ , then a – c = 2(n + m) where n + m ∈ , 
therefore aRc for every a, b, c ∈ ℤ. R partitions ℤ into two equivalence classes: odd and even 
numbers.

6. First we determine which numbers are in relation with 0; 3 is a factor of x – 0, [0] are the 
multiples of 3. x ∈ {......–6, –3, 0, 3, 6, .....}. in other words {x | x = 3k, k∈}. Now we determine 
which numbers are in relation with 1. We need x such that 3 is a factor of x – 1. These are the 
integers which give a remainder 1 on division by 3. x ∈ {......–5, –2, 1, 4, 7,.....};  {x | x = 3k + 
1 k ∈ ℤ}. Next we determine which numbers are in relation with 2. We need x such that 3 is a 
factor of x – 2. These are the integers which give a remainder 2 on division by 3. x ∈ {......–4, 
–1, 2, 5, 8,.....}; {x | x = 3k + 2, k ∈ ℤ}.Which integers are in relation with 3? These numbers 
are the same as the first set, because 3 is in the first set. So we can conclude that there are 
altogether three equivalent classes. 

7. We have to show that it is reflexive, symmetric and transitive. R is reflexive since m is a 
divisor of a – a = 0 for every a ∈ ℤ and m ∈ ℕ, 2 ≤ m. R is symmetric since if a – b = k∙m then 
b – a = –(a – b) = -k∙m for every a, b , k ∈ ℤ and m ∈ ℕ, –k ∈ ℤ, 2 ≤ m. R is transitive since if 
a – b = k∙m and b – c = j∙m then a – b + b – c = a – c = (k + j)∙m for every a, b, c ∈ ℤ, k+j∈ℤ, 
and m ∈ ℕ, 2 ≤ m. If we take any positive integer and divide it by any positive integer m, the 
possible remainders are integers: 0, 1, 2, 3, 4,..., m – 1. We could place in one set all those 
integers which give a remainder 0 on division by m, in another set all those integers with 
remainder 1, in another those with remainder 2 and so on. All these sets will be different, 
and every integer will be in only one set for a given m. It is a partition of ℤ. This relation 
partitions ℤ into m equivalence classes.
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Exercise 2.5

1. aRb if |a| = |b| where a, b ∈ ℝ.

Answer Reasoning
reflexive Yes |a| = |a| for every a ∈ ℝ.

symmetric Yes If |a| = |b| then |b| = |a| for every a, b ∈ ℝ.
transitive Yes If |a| = |b| and |b| = |c| then |a| = |c| for every a, b, c ∈ ℝ.

 

 Since R is reflexive, symmetric and transitive, it is an equivalence relation. Equivalence 
classes are: {0}, {3,-3}, {1.5,-1.5}, etc.

2. mRn if and  m, n ∈ + and 3 is a factor of m2 – n2. Notation: 3|m2 – n2.

Answer Reasoning
reflexive Yes 3|m2 – m2 = 0 for every m ∈ ℤ+.

symmetric Yes If 3|m2 – n2 then 3| –(m2 – n2) = n2 – m2  for every m, n ∈ ℤ+.

transitive Yes If 3|m2 – n2 and 3|n2 – k2, then 3|m2 – n2 +n2  k2  = m2 – k2 for every m, 
n, k ∈ ℤ+.

Since R is reflexive, symmetric and transitive, it is an equivalence relation. 

To find the equivalence classes, we make a table

x x² x² (mod 3)
1 1 1
2 4 1
3 9 0
4 16 1
5 25 1
6 36 0
7 49 1
8 64 1
9 81 0

10 100 1
11 121 1
12 144 0

 There are 2 equivalence classes: multiples of 3 and non-multiples of 3.
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3. xRy if x, y ∈  and 2 is a factor of x2 + y2.

Answer Reasoning
reflexive Yes 2|x2 + x2 = 2x2 for every x ∈ ℤ.

symmetric Yes If 2|x2 + y2 then 2|y2 + x2 for every x, y ∈ ℤ.

transitive Yes If 2|y2 + x2 and  2|x2 + k2 then  2| y2 + x2 + x2 + k2 = y2 + k2 + 2x2. 
Therefore 2|y2+k2 for every y, x, k ∈ ℤ.

Since R is reflexive, symmetric and transitive, it is an equivalence relation. The equivalence 
classes are the odd and even numbers.

4. mRn if  m, n ∈ ℕ+  and  m×n is a perfect square.

Answer Reasoning
reflexive Yes a×a  is a perfect square for every a ∈ ℕ+.

symmetric Yes If a×b is a perfect square then b×a is a perfect square for every 
a, b ∈ ℕ+.

transitive Yes If a·b = n2 and b·c = m2, then then a·c·b2 = m2× n2 and a·c =   (   mn ___ b   )  2 . 
Since b is a factor of n and m as well,  (   mn ___ b   )  is an integer.

 Since R is reflexive, symmetric and transitive, it is an equivalence relation. Equivalence classes 
are formed by those positive integers for which the product of their prime factorisation has 
primes with even exponents only.

5. aRb if a and b are co-primes (relative primes) a, b ∈ ℕ+. (a and b are co-primes if their 
greatest common divisor is 1, gcd(a, b) = 1.)

Answer Reasoning

reflexive No “a” and “a” are not co-primes since gcd(a, a) = a ≠1 (unless a = 1).

symmetric Yes If gcd (a, b) = 1 then gcd (b, a) = 1 for every a, b ∈ ℕ+.

transitive No Counter example: a = 12 and b = 35 c = 2: gcd (12, 35) = 1 and  gcd 
(35, 2) = 1 but gcd (12, 2) = 2. Therefore 12R2.

 Since R is neither reflexive nor transitive (only one counter example is needed), it is not an 
equivalence relation.
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6. (x, y)R(a, b) if  x2 + y2 = a2 + b2    (a, b), (x, y) ∈ 핉×핉.

Answer Reasoning
reflexive Yes x2 + y2 = x2 + y2 for every (x, y) ∈ ℝ×ℝ.

symmetric Yes If x2 + y2 = a2 + b2 then a2 + b2 = x2 + y2   for every (a, b), (x, y) ∈ ℝ×ℝ.

transitive Yes If x2 + y2 = a2 + b2 and  a2 + b2 = c2 + d 2 then x2 + y2  = c2 + d2 for every 
(a, b), (x, y), (c, d) ∈ ℝ×ℝ.

 Since R is reflexive, symmetric and transitive, it is an equivalence 
relation.

 Equivalence classes: We will try to find one example. We 
will find all of the points such that (0, 1)R(x, y) that is 
where x2 + y2 = 02 + 12. Thus we need points for which 
x2 + y2 = 12. This determines a circle with the centre being the origin 
and the radius being equal to 1. This is one equivalence class. Thus 
R partitions ℝ × ℝ into equivalence classes consisting of circles centred at the origin, for 
example {(x, y)| x² + y²  = 1}, {(x, y)| x² + y² = 2.3}, etc. The origin is in an equivalence class 
by itself. 

7. aRb if  |a| − |b| is even where a, b ∈ ℝ.

Answer Reasoning

reflexive Yes |a| − |a| = 0 which is even for every real number.

symmetric Yes If |a| − |b| is even then |b| − |a| = -(|a| − |b|)  is even, too.

transitive Yes If |a| − |b| is even and |b| − |c| is even then their sum |a| − |c| 
is even, too.

 Since R is reflexive, symmetric and transitive, it is an equivalence relation. Those numbers 
are in the same equivalence class which are at the distance of 2 units from each other on the 
number line.

8. (x, y)R(a, b) if x, y, a, b ∈ ℝ  and  x + y = a + b.

Answer Reasoning
reflexive Yes a + b = a + b for every (a, b) ∈ ℝ×ℝ.

symmetric Yes If (a, b)R(c, d) then (c, d)R(a, b) that is if  a + b = c + d  then  c + d 
= a + b for every (a, b), (c, d) ∈ ℝ×ℝ.

transitive Yes If (a, b)R(c, d) and (c, d)R(e, f) then (a, b)R(e, f): If a + b = c + d and 
c + d = e + f then a + b = e + f  for every (a, b), (c, d), (e, f) ∈ ℝ×ℝ.

 Since R is reflexive, symmetric and transitive, it is an equivalence relation.

 Equivalence classes: We will try to find one example. We will find all of the points such 
that (0, 1)R(x, y) that is where x + y = 0 + 1. Thus we need points for which x + y = 1. This 

1 2 3 4–1–2–3–4

1

2

3

4

–1

–2

–3

–4

x

y
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determines a line y = 1 – x. This is one equivalence class.

 Then we will find all of the points such that (–2, 3.4)R(x, y) that is where x + y = –2+3.4. 
Thus we need points for which x + y = 1.4. This determines a line y = 1.4 – x. This is another 
equivalence class.

 Other equivalence classes are lines with equation y = c – x where c ∈ ℝ.

 The equivalence classes consist of all lines with slope = –1.

1 2–1–2

1

2

–1

–2

x

y

 

The equivalence classes for x + y = a + b

9. (a, b)R(c, d) if |a| +|b| = |c| + |d|, where (a, b) ∈ ²\{(0, 0)}.

Answer Reasoning

reflexive Yes It is reflexive since |a| + |b| = |a| + |b| for every (a, b) ∈ ℝ2\(0, 0).

symmetric Yes If (a, b) R(c, d)  then |a| + |b| = |c| + |d|. This implies that (c, d)R(a, 
b) by using |c| + |d| = |a| + |b|  where (a, b), (c, d) ∈ ℝ2\(0, 0).

transitive Yes
If (a, b)R(c, d) and (c, d)R(e, f) then |a| + |b| = |c| + |d| and  |c| + |d| 
= |e| + |f|. Therefore |a| + |b| = |e| + |f| holds. This means that (c, d)
R(e, f) for every (a, b), (c, d), (e, f) ∈ ℝ2\(0, 0).

Since R is reflexive symmetric and transitive, it is an equivalence relation. 

To find the equivalence classes we first try to find the equivalence classes for all points 
such that (0, 1)R(x, y) where |0| + |1| = 1 . We need points which satisfy |x| + |y| = 1. If we 
investigate points in the first quadrant then we need points such that x + y = 1 holds. 

So y = 1 – x. This means a segment with endpoints (0, 1) and (1, 0). If we investigate points 
in the second quadrant then we need points when –x + y = 1.

So y = 1 + x. This means a segment with endpoints (0, 1) and (–1, 0). After drawing the 
other two segments in the third and fourth quadrant we have the locus which is a square 
with vertices (0, 1), (0, –1), (1, 0) and (–1, 0). 



12

Mathematics HL Topic 8: Sets, Relations and Groups Answers

1 2–1–2

1

2

–1

–2

x

y

1 2–1–2

1

2

–1

–2

x

y

                         The equivalence class for (0,1)                More equivalence classes

 The other equivalence classes are all other squares with the centre of origin and vertices on 
the axes. If origin is included then one more class is the origin alone.

10. (x, y)R(a, b) if x, y, a, b ∈ ℝ and [a] = [x], [b] = [y], where [z], the floor function, means the 
greatest integer less than or equal to z. Notations:  int(x) or [x]. It is called the integral or 
integer part of a number.

reflexive Yes (a, b)R(a, b) since [a] = [a] and [b] = [b] for every (a, b) ∈ ℝ × ℝ.

symmetric Yes If (a, b)R(c, d) then (c, d)R(a, b). If [a] = [c] and [b] = [d] then [c] = [a] 
and [d] = [b] for every (a, b), (c, d) ∈ ℝ × ℝ.

transitive Yes If [a] = [c], [b] = [d] and [c] = [e], [d] = [f] then [a] = [e] and [b] = [f] 
for every (a, b), (c, d), (e, f) ∈ ℝ × ℝ.

 Since R is reflexive, symmetric and transitive, it is an equivalence relation. Equivalence classes:  
All of the points in each 1 × 1 square is an equivalence class. The upper right edges of each 
square are excluded from the class and the lower left edges of each square are included in 
the class.

x

y

The  equivalence classes for [a] = [x], [b] = [y]
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IB Exam Type Problems
1. i. R is reflexive because aRa since a² ≡ a² (mod n) for every a ∈ the set.

 R is symmetric since if a² ≡ b² (mod n), then b² ≡ a² (mod n) for every a, b ∈ the set.

 Let aRb and bRc, then a² - b² = nm and b² - c² = nk where m, k are integers. 

 ii. Adding gives a² - c² = n(m + k), where m + k ∈ ℤ, so aRc is transitive.

 
x x² x2 (mod 6)
1 1 1
2 4 4
3 9 3
4 16 4
5 25 1
6 36 0
7 49 1
8 64 4
9 81 3

10 100 4
11 121 1
12 144 0
13 169 1
14 196 4

 The equivalence classes are: {1, 5, 7, 11, 13}, {2, 4, 8, 10, 14}, {3, 9} and {6, 12}.

2.  i. Reflexive: (a, b)R(a, b) because ab = ba for every (a, b) ∈ ℝ+ × ℝ+.

 Symmetric: If (a, b)R(c, d), then ad = bc, then cb = da, so (c, d)R(a, b) for every (a, b) ∈ 
ℝ+×ℝ+, so symmetric.

 Transitive: (a, b)R(c, d) and (c, d)R(e, f), then ad = bc and cf = de, so   ad ___ de   =   bc __ cf   , so af = be, so 
(a, b)R(e, f) for every (a, b) ∈ ℝ+ × ℝ+, so transitive.

ii. If (a, b)R(x, y), then ay = bx or y =   b __ a  x. So the equivalence classes are points in the first 
quadrant on straight lines through the origin with slope   b __ a  .

3.   1R2, but 2R1, so R is not symmetric, so R is not an equivalence relation.

4.  i. Reflexive: x² – 4x = x² – 4x, for every x ∈ ℝ so reflexive.

 Symmetric:  if x² – 4x = y² – 4y, then y² – 4y = x² – 4x for every x, y ∈ ℝ, so symmetric.

 Transitive: if x² – 4x = y² – 4y and y² – 4y = z² – 4z, then x² – 4x = z² – 4z for every x, y, z∈ℝ, 
so transitive.

 So R is an equivalence relation.
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ii. If y² – 4y = x² – 4x, then 0 = x² – y² – (4x – 4y), so (x – y) (x + y) – 4 (x – y) = 0, so (x – y)(x + 
y – 4) = 0, so either x = y (which unhelpfully means that every number is in an equivalence 
class with itself) or x + y = 4 (which means equivalence classes are ..., {2, 2}, {3, 1}, {4, 0} {5, 
-1}, {6, -2}, {7, -3}, {0.2. 3.8}, {-3.9, 7.9}, {6.4, -2.4} ... 

iii.  {2}

4.  i. Reflexive: 2x ≡ 2x (mod10) for every x ∈ ℤ+, so R is reflexive.

 Symmetric: If 2x ≡ 2y (mod 10), then 2x - 2y = 10 n, n ∈ ℤ, so 2y - 2x = -10 n, so 2y ≡ 2x 
(mod 10) for every x, y ∈ ℤ+, so R is symmetric.

 Transitive: If 2x ≡ 2y (mod 10) and 2y ≡ 2z (mod 10), then 2x - 2y = 10n and 2y - 2z = 10m, 
n, m ∈ ℤ; adding gives, 2x - 2z = 10(n + m), so 2x ≡ 2z (mod 10) for every x, y, z ∈ ℤ+, so 
transitive.

x 2x 2x (mod 10)
1 2 2
2 4 4
3 8 8
4 16 6
5 32 2
6 64 4
7 128 8
8 256 6
9 512 2

10 1024 4
11 2048 8
12 4096 6

ii.	 The	equivalence	classes	are	{1,	5,	9,	…},	{2,	6,	10,	…},	{3,	7,	11,	…},	{4,	8,	12,	…};	that	
is	the	equivalence	classes	are	4k,	4k +	1,	4k +	2,	4k +	3,	k	∈ ℤ.

6. i.  Reflexive: Since x2 - y2 = x2 - y2, (x, y)R(x, y) for every (x, y) ∈ ℝ+ × ℝ+, so reflexive.

 Symmetric: If x2 - y2 = a2 - b2, then a2 - b2 = x2 - y2 for every (x, y), (a, b) ∈ ℝ+ × ℝ+,  so 
symmetric.

 Transitive: If x2 – y2 = a2 – b2 and a2 – b2 = c2 – d2, then x2 – y2 = c2 – d2 for every (x, y), (a, b), 
(c, d) ∈ ℝ+ × ℝ+, so transitive.

ii.  If (x, y) R (0, 0) then x² – y² = 0² – 0², so x² – y² = 0, so (x – y)(x + y) = 0, so y = x or y = –x. 
Only y = x is in the first quadrant, so the equivalence class of (0, 0) is the part of the line y = x 
in the first quadrant.

7.  i. R1 is not an equivalence relation, because cRc, so R1 is not reflexive.

 R2 is not an equivalence relation, because dRf, but fRd, so R2 is not symmetric.

 R3 is reflexive because gRg, hRh, iRi; symmetric because gRi and iRg; and transitive. So R3 is 
an equivalence relation.

ii.  For R3 the equivalence classes are {h} and {g, i}.
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Exercise3.1

1.   f(x) = 2 e x  range = ℝ+; f(x) = arctan x, range =  ( –  π __ 2  ,   π __ 2   )  ; f(x) =   1 __ x  , range = ℝ\{0}. They are not 
surjections because their range is not ℝ, codomain. They are injections because they pass the 
HLT.

2.  f(x) = x³ – x. It is not an injection because f(0) = f(1). It is a surjection because its range is ℝ, 
codomain.

3. a. Injective because it passes the HLT; surjective because the range = {a, b} is codomain.

b. Injective because it passes the HLT; not surjective since range = {a, b, c} ≠ B.

c. Injective because it passes the HLT; not surjective since range = ℝ+ ≠ ℝ.

d. Injective because it passes the HLT, surjective because the range = ℝ+ is codomain.

e. Injective because it passes the HLT; 

 surjective since range = R is the codomain.

f. Injective because it passes the HLT; 

 not surjective since range = R+ ≠ R = codomain.

g. Not injective because it fails the HLT; 

 surjective since range = R+⋃ {0} = codomain.

h. Injective, since if f(a) = f(b), then a – 2 = b – 2, then a = b; surjective, since range = ℤ = 
codomain.

i.  f(–1) = f(1), so not injective; x = ± √
_____

 y + 2   if y ≥ –2, so for y = 0, ± √
__

 2   ∉ ℤ, so not surjective. 
Or if y = 0, x² – 2 = 0, so x² = 2, which has no integer solution.

j. Injective, since if f(a) = f(b), then 3a – 2 = 3b – 2, then a = b; x =   
y + 2

 _____ 3   , so for y = 0, x ∉ ℤ, so 
not surjective. Or for y = 0, 0 = 3x – 2, which has no integer solution.

k. Injective, since if f(a) = f(b), then  √
_____

 a – 2   =  √
_____

 b – 2   then a – 2 = b – 2, then a = b; surjective, 
since range = R+⋃{0} = codomain.

l. f(1, 2) = f(2, 1) so not injective. For f(x, y) = (1, 1), xy = 1, x + y = 1, we get 

 x² – x + 1 = 0, which has no real solutions, so not surjective.

m. Fails HLT so not injective, range is [–1, 1] so not surjective.
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n. Fails HLT so not injective, range is [–1, 1] so surjective.

o. Fails HLT so not injective, range is [–1, 1] so surjective.

p. Passes HLT so injective, range is [–1, 1] so surjective.

q. Injective, surjective.

r. Fails HLT so not injective, surjective, since range =R = codomain.

s. Passes HLT so injective], surjective, 

 since range =R = codomain.

t.  Fails HLT, so not injective; 

 not surjective, since range = ]0, 1] ≠R = codomain.

u. Passes HLT so injective;

 surjective, since range = ]0, 1] = codomain.

v.  Passes HLT so injective, surjective, since range = R = codomain.

w. f(0.1) = f(0.2) = 0, so not injective; range is ℤ ≠ 핉 = codomain, so not surjective.

4. 

a,  Fails HLT, so not injective, surjective, since range = ]0, 1] = codomain.

b.  Fails HLT, so not injective, not surjective, since range = ]0, 1] ≠ R = codomain.

c.  Passes HLT so injective, not surjective, since range = ]-1, 1[ ≠ R = codomain.

d.  Passes HLT so injective, surjective, since range = ]-1, 1[ = codomain.
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5. Since it is an odd polynomial, range = 핉 = codomain, 

 so surjective; f(0) = f(3) = 0, so not injective.

6. f '(x) =   2 – 2 x 2  _______ 
  (  x 2  + 1 )  2 

     f '(x) = 0 when x = ±1; f ' changes sign at x = ±1, 

 so f is not an injection; , f(–1) = –1, f(1) = 1, so surjection.

7. f '(x) =   1 ____ 2 √
__

 x     > 0 for x > 0, so injection; range y > 0 which is not the codomain, so not a 
surjection.

8. f '(x) = = sec²x > 0 for all x and the domain includes only one period of tan(x), so f(x) is 
injective. Range of tan x = 핉, so a surjection.

IB Exam Type Problems

1.  Since f(3) = f(–2) = 0, it is not an injection. 

 Solving for x gives 

f(x) = {  
  x + 2 _____ 2   if x is even

          
   x – 3 _____ 2   if x is odd

  

 For all y ∈ ℤ there is an x ∈ ℤ, since 2y – 2 is even and 2y + 3 is odd, so f(x) is surjective.

2.  We must show that f(x) is injective and surjective.

 f '(x) = 2x + 2, which is positive for all x > –1, so f(x) is injective.

 Starting with y = x² + 2x – 15, completing the square and solving for x gives x = –1 ± √
______

 y + 16   
which is real for y ≥ –16; so f(x) is surjective. So f(x) is bijective. So f(x) has an inverse, f–1(x)  
= –1 + √

______
 x + 16  , where from ± the + is selected to correspond to the domain of f(x).

3.  We must show that f(x) is injective and surjective.  So we must show that if f(a, b) = f(c, d), 
then a = c and b = d. So a – b = c – d and a + b = c + d, adding the equations gives, 2a = 2c, 
so a = c, subtracting the two equations gives b = d, so f(x) is injective. 

 Letting f(x, y) = (U, V) gives  U = x – y, V = x + y. 

 Solving for x and y gives x =   U + V ______ 2  , y =   –U + V _______ 2   ;

  if  U, V ∈ R, then x, y ∈ 핉, so f(x) is surjective. So f(x) is bijective. 

 So f(x) has an inverse, f –1(x, y) =  (   x + y
 _____ 2  ,   

–x + y
 ______ 2   ) 
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4.  We must show that f(x) is injective and surjective.  So we must show that if f(a, b) = f(c, d), 
then a = c and b = d. So 3a – 2b = 3c – 2d and –a + 2b = –c + 2d. Adding the equations gives 
2a = 2c, so a = c; subtracting gives c = d, so f(x) is injective. 

 Letting f(x, y) = (U, V) gives  U = 3x – 2y, V = –x + 2y. 

 Solving for x and y gives x =   U + V ______ 2  , y =   U + 3V _______ 4   

 If  U, V ∈ 핉, then x, y ∈ 핉, so f(x) is surjective. 

 So f(x) is bijective. So f(x) has an inverse, f –1(x, y) =  (   x + y
 _____ 2  ,   

x + 3y
 ______ 4   ) .

Exercises 4.1

1. a. 

 i. 2 ∗ 3 = 2 + 3 – 2·3 = –1

 ii. –3 ∗ 0 = –3 + 0 – (–3)·0 = –3

 iii. 6 • 2= 2 – 6 = –4

 iv. (3 ∗ 2) • 4 = 4 –( 3 + 2 - 3·2) = 4 – (–1) = 5

 v. (–2 • 6) ∗ 1 = [6 – (–2)] ∗ 1 = 8 ∗ 1 = 8 + 1 – 8·1 = 1.

b)

 i.  2 ∗ x = 3   means 2 + x – 2x = 3 which gives x = –1

 ii. x ∗ 4 = 11  means x + 4 – x·4 = 11 which gives x = –  7 __ 3   

 iii. –3 • x = 5  means x – (–3) = 5  which gives x = 2.

2. Let  a ∗ b = a²b, a, b ∈ ℤ.

a) 

 i. 3 ∗ 2 = 9·2 = 18

 ii. 2 ∗ 3 = 4·3 = 12

 iii. 3 ∗ 3 = 9·3 = 27

 iv. 0 ∗ –2 = 0·(–2) = 0

 v. 3 ∗ 4 = 9·4 = 36

 vi. 2 ∗ 2 = 4·2 = 8

 vii. 2 ∗ (3 ∗ 4) = 2 ∗ (9·4) = 2 ∗ 36 = 4·36 = 144
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 viii. (2 ∗ 3) ∗ 4 = (4·3) ∗ 4 = 12 ∗ 4 = 144·4 = 566.

b. For a = b or either a or b is zero.

c. No, counter-examples are given in part vii and viii. 

Exercise 4.2

a. It is not a binary operation since 00 is not defined. 

b. Not a binary operation, for example because 3 ∗ -1 is undefined. 

c. A binary operation since any two positive integers have a gcd. The greatest common divisor 
of two positive integers is a positive integer. So the binary operation is closed.

d. Not a binary operation, for example because 1 ∗ 1 is undefined. 

e. A binary operation. As addition, subtraction and multiplication of real numbers are closed, 
2a – 3c and 2b + d are real, so (2a – 3c, 2b + d) ∈ 핉2 . So the binary operation is closed.

f. A binary operation since you can form a fraction with a non-zero denominator. Any non-
zero real number divided by another non-zero real number is a non-zero real number. So 
the binary operation is closed.

g. A binary operation since you can calculate the result for any two integers a and b. As addition, 
subtraction and multiplication of integers is closed, a + b - 2ab ∈ ℤ.  So the binary operation 
is closed.

h. It is a binary operation since the product is defined for all possible values of a and b. Not 
closed since (3+2i)(4+6i) = 12 +18i+8i–12 = 0 which is not a member of the original set.

i. It is a binary operation since the product is defined for all possible values of a and b.  
It is closed since (a+bi)(c+di) = (ac - bd) + (ad + bc)i and if a and b are not both equal to 
zero and c and d are not both equal to zero, then at least one of ac, bd, ad or bc must also 
not equal zero.

j. It is a binary operation, but not closed, since 3 divided by 4 is not a positive integer.

k. It is a binary operation and it is closed since the product of any two positive odd integers is 
a positive odd integer as well.

l. It is a binary operation. It is not closed since the sum of two odd numbers is even.

Exercise 4.3

1. a ∗ e = a   for every integer.
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 a + e – 2ae = a

 e = 2ae

 e = 0

 e ∗ a = a also gives e = 0, so a ∗ b has identity element e = 0.

2. e ∗ a =   e __ a   = a gives e = a²

 a ∗ e =   a __ e   = a gives e = 1.

 e ∗ a ≠ a ∗ e so a ∗ b has no identity element.

3. a ∗ e = a   and e ∗ a = a   means 2ae = a  and 2ea = a. Therefore e =   1 __ 2   which is a real number.

4. e ∗ a = 2e + a = a  means e = 0.

 a ∗ e = 2a + e = a means e = –a for every real number. There is no identity element.

5. a ∗ e = a + 3e = a means e = 0 for every real number.

 e ∗ a = e + 3a = a  means e = –2a. There is no identity element.

6. e ∗ a = a should hold if e is an identity. e ∗ a = e by the definition of the operation. This way 
e and a should be equal. There is no identity element.

7. The universal set is the identity element. A∩U = U∩A = A for every A⊆U  and  U⊆U so it 
is from the set.

8. The empty set is the identity element A∪∅ = ∅∪A = A for every A⊆U and ∅⊆U so it is 
from the set.

Exercise 4.4

1. We already know that e = 0.

 a ∗ a–1 = a + a–1  – 2aa–1 = e = 0

 a + a–1  – 2aa–1 = 0

 a =  a–1 (1 –2a) = 0

 a–1  =   1 _____ 2a – 1   ∈ ℝ, for all elements a other than   1 __ 2  .

2. We already know that   1 __ 2   is the identity element. a ∗ a-1 = 2aa-1 =   1 __ 2   therefore a-1 =   1 ___ 4a   . But 0 
has no inverse.

3. We already know that the identity is 1. a ×   1 __ a    = 1. If a ∈ ℚ,   1 __ a    ∈ ℚ unless a = 0. Therefore   1 __ a    
is the inverse of a, except that 0 has no inverse. 
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4. We already know that the identity is 0. If a ∈ ℚ then –a ∈ ℚ and a + (–a) = (–a) + a = 0. 
Therefore –a is the inverse of a.

Exercise 4.5

1. a ∗ b is commutative, because the definition is symmetric with respect to a and b. Or 
explicitly: a ∗ b = a² + b² – 3(a + b)² = b ∗ a = b² + a² – 3(b + a)²   for every a, b ∈ ℝ.

2. a ∗ b is not commutative, because the definition is not symmetric with respect to a and b. 
Or one counterexample is 3 ∗ 1 = 3² + 1³ – 3(3 + 1)²  = -38 ≠   1 ∗ 3 = 1² + 3³ – 3(3 + 1)² = 
–20.

3. a ∗ b = a + b – 2a – 2b = -a – b; b ∗ a = b + a – 2b – 2a = -a – b for every a, b ∈ ℝ. So a ∗ b 
is commutative.

Exercise 4.6

1. It is commutative since
 
a ∗ b =   (  2 a  )  b  = 2ab = b ∗ a = (2a)b = 2ab for every a, b ∈ ℝ.

 It is not associative since (2 ∗ 3) ∗1 =   (  2 2  )  3  ∗ 1 = 64 ∗ 1=  2 64  ≠

 2 ∗ (3 ∗ 1) = 2 ∗ [    (  2 3  )  1  ]  = 2 ∗ 8 =   (  2 2  )  8  =  2 16 .

2. It is commutative since a ∗ b = a + b + ab and b ∗ a =  b + a +ba for every a, b ∈ ℝ.

 It is associative since

 (a ∗ b) ∗ c = (a + b + ab) ∗ c = a + b + ab + c + (a + b + ab)c = a + b + ab + c + ac + bc 
+ abc

 a ∗ (b ∗ c ) = a ∗ (b + c + bc) = a +b + c + bc + a(b + c + bc) = a +b + c + bc + ab + ac 
+ abc which are equal.

3. It is not commutative since 1 ∗ 2 = 3 + 4 = 7 ≠ 2 ∗ 1 = 6 + 2 = 8.

 It is not associative since (2 ∗ 3) ∗1 = (6 + 6) ∗ 1 = 12 ∗ 1 = 36 + 2 = 38 ≠

 2 ∗ (3 ∗ 1) = 2 ∗ (9 + 2) =  2 ∗ 11 = 6 + 22 = 28.

4. It is not commutative since 1 ∗ 2 = 1 · 4  = 4 ≠ 2 ∗ 1 =  2 · 1 = 2.

 It is not associative since (2 ∗ 3) ∗ 2 = (2 · 3²) ∗ 2 = 18 ∗ 2 = 18 ·22 = 72 ≠

 2 ∗ (3 ∗ 2)  = 2 ∗ (3 · 22)  =  2 ∗ 12 = 2·122 = 288.

5. It is commutative since a ∗ b = (a · b)² = b ∗ a =  (b · a)²      for every a, b ∈ ℝ. 

 It is not associative since 

 (2 ∗ 3) ∗1 = 36 ∗ 1 = 362 = 1296 ≠ 2 ∗ (3 ∗ 1)  = 2 ∗ 9  =  182 = 324.
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6. It is commutative since a ∗ b = a² + b² = b ∗ a =  b² + a²      for every a, b ∈ ℝ.

 It is not associative since (2 ∗ 3) ∗1 = (2² + 3²) ∗ 1 = 13 ∗ 1 = 13² + 1² = 169 + 1 = 170 ≠

 2 ∗ (3 ∗ 1)  = 2 ∗ (3² + 1² )  =  2 ∗ 10 = 2² + 10² =104.

7. It is commutative since a ∗ b = |a – b| = b ∗ a =  |b – a|    for every a, b ∈ ℝ.

 It is not associative since (5 ∗ 3) ∗1 = |5 – 3| ∗1 = 2 ∗ 1 =|2 – 1| = 1 ≠

 5 ∗ (3 ∗ 1)  = 5 ∗ |3 – 1| =  5 ∗ 2 = |5 – 2| = 3.

8. It is commutative since a ∗ b = b ∗ a for every a, b ∈ ℝ, since the remainder of  a · b is the 
same as the remainder of  b · a. It is associative, because the remainder of a product is equal 
to the remainder of the product of the remainders.

9. It is commutative since a ∗ b = b ∗ a for every a, b ∈ S, because the remainder of a + b on 
division by 4 is the same as the remainder of b + a on division by 4.

 It is associative since the remainder of a sum is equal to the remainder of the sum of the 
remainders. 

10. It is neither commutative nor associative.

11. It is commutative since a ∗ b = b ∗ a for every a, b ∈ S, because the remainder of a + b on 
division by n is the same as the remainder of b + a on division by n.

 It is associative since the remainder of a sum is equal to the sum of the remainders. 

12. It is commutative since a ∗ b = b ∗ a for every a, b ∈ ℝ since the remainder of  a · b is the 
same as the remainder of  b · a. It is associative, because the remainder of a product is equal 
to the remainder of the product of the remainders.

13. i. a. x = q,  b. x = p,  c. x = s,  d. x = r.

 ii.a.No solution, b. x = p,  c. x = p, q, d. x = q.

IB Exam Type Problems

1. a. It is closed. a + b − 1 ∈ ℤ+, for all a, b ∈ ℤ+.

b  a ∗ e = e ∗ a = a + e – 1 = a; therefore e = 1 ∈ ℤ.

c.  a-1 ∗ a-1 = a ∗ a-1 = e = 1 = a + a-1– 1; so a-1 = 2 – a. Since a-1 must belong to ℤ+, a-1 exists 
only for a = 1.

d.  a ∗ b = a + b – 1; b ∗ a = b + a – 1, so it is commutative for every a, b ∈ ℤ+.

e.  (a ∗ b) ∗ c = (a + b – 1) ∗ c = (a + b – 1) + c – 1 = a + b + c – 2

 a ∗ (b ∗ c) = a ∗ (b + c – 1) = a + (b + c – 1) – 1 = a + b + c – 2
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 for every a, b, c ∈ ℤ+. So it is associative.

2. (a) It is closed. a + b + 2ab ∈ ℝ   for all a, b ∈ ℝ.

b.  a ∗ e = e ∗ a = a + e + 2ae = a; e(1 + 2a) = 0; therefore e = 0 ∈ ℝ.

 e ∗ a = e + a + 2ea = a gives the same identity element.

c.  a-1 ∗ a-1 = a ∗ a-1 = a + a-1– 2aa-1 = e = 0;  so a =  a-1(2a–1), so a-1 =   a _____ 2a – 1    a-1 exists for a ≠  1 __ 2   

d.  a ∗ b = a + b + 2ab = b ∗ a = b + a + 2ba for all a, b ∈ ℝ, so it is commutative.

e.  (a ∗ b) ∗ c = (a+b+2bc) ∗ c = a+b+2ab+c+2(a + b + 2bc)c = a+b+2ab+c+2ac+bc+4abc.

 a ∗ (b ∗ c) = a * (b + c + 2bc) = a + b + c + 2bc + 2a(b + c + 2bc)

 = a + b + c + 2bc + 2ab + 2ac + 4abc. So it is associative.

3. a. It is not closed. 1 ∗ 2 =   2 __ 3   ∉ ℤ+

b. a ∗ e = e ∗ a =   ae _____ a + e  , so ae = a² + ae, which has no solutions for e, so there is no identity.

d, It is commutative.

e. It is associative because

 (a ∗ b) ∗ c =   ab _____ a + b   ∗ c =  
   abc _____ a + b  

 ________ 
  ab _____ a + b   + c

     =  
   abc _____ a + b  
 _____________  

  ab _____ a + b   + c   a + b _____  a + b  
   =   

  abc _____ a + b  
 __________ 

  ab + ca + cb __________ a + b  
    =   abc __________ ab + ac + bc

  

 a ∗ (b ∗ c) = a ∗   bc ____ b + c   =   
  abc ____ b + c  

 ________ 
a +   bc ____ b + c   

    =   
  abc ____ b + c  
 _____________  

a   b + c _____ b + c   +   bc _____  b + c   
   =   abc __________ ab + ac + bc    = (a ∗ b) ∗ c.

4. a.

 × 1 3 5 7

1 1 3 5 7
3 3 1 7 5
5 5 7 1 3
7 7 5 3 1

  so closed.

b. Yes, 1.

c. 3, 5 and 7 are self inverses.

d. Yes, because Rem(a×b) = Rem(Rem(a)×Rem(b)).
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5. a,    Closed. b, No.  c. None.

 d.   Yes, because Rem(a+b) = Rem(Rem(a)+Rem(b)).

6. a.  Yes, ℝ is closed under addition, subtraction and multiplication.

b. (a, b) ∗ (e1, e2) = (a, b) = (ae1 – be2, ae2 + be1). So a = ae1 – be2, b = ae2 + be1. Solving 
simultaneously gives (e1, e2) = (1, 0).

c. (a, b) ∗ (a-1, b-1) = (e1, e2) = (1, 0) = (a a-1 – b b-1, a b-1 + b a-1). 

 Therefore 1 = a a-1 – b b-1,     (1)     0 = a b-1 + b a-1.     (2)

 Therefore b = a b a-1 – b² b-1, b × (1)  0 = a² b-1 + a b a-1.   a × (2)

 Subtracting gives b = –b² b-1 – a² b-1 so -b = b-1 (a² + b²)

 so  b –1  =   –b ______ 
 a 2  +  b 2 

  .

 Substituting this into (2) gives 0 = a  –b ______ 
 a 2  +  b 2 

   + b a –1 

 so  a –1  =   a ______ 
 a 2  +  b 2 

  .

 And finally  (  a –1 ,  b –1  )  =  (   a ______ 
 a 2  +  b 2 

  ,   –b ______ 
 a 2  +  b 2 

   ) 
d. Yes.

Exercise 5.1

1. Closure: It is closed. The sum of two even numbers is even. 

 Identity element:  e = 0 since, 0 + a = a + 0 = a for every an even number. 0 is even.

 Inverses: If a = 2n, where n∈ℤ, then a – 1 = –2n since 2n – 2n = 0 and –2n is even as well.

 Associativity: (2n + 2m) + 2k = 2n + (2m + 2k) for every n, m, k ∈ ℤ.

 So it is a group.

2. 3 has no inverse. 3 × a = 1 has solution, a =   1 __ 3   but it is not an integer. So it is not a group.

3. 0 has no inverse. So it is not a group.

4. Closure: It is not closed:   1 __ 3   ×   1 __ 2   =   1 __ 6    ∉ A So it is not a group.

5. Identity element: e = S since S∩A=A∩S = A for every subset A of S. S ⊆ S.

 But only S has an inverse, itself. So it is not a group.

6. Not associative, for example a = 4, b = 1, c = 2. (a ∗ b) ∗ c = 1 and a ∗ (b ∗ c) = 3.
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 So it is not a group.

7. There is no identity element.   ae _____ a + e    → ae = a2 + ae → a2 = 0 → a = 0 ∉ 핉+.

 So it is not a group.

Exercise 5.2

1. It is not a group, because not closed s ∗ s = t.

2. It is not a group, because there is no identity element.

3. r is the identity element. It is not a group, because q has no inverse.

4. It is a group. s is the identity element. r-1 = r, s-1 = s, p-1 = q, q-1 = p.

Exercise 5.3

1.

a. For all a, b ∈ S, a ∗ b ∈ S.

b. The identity element is a, because a ∗ b = b and b ∗ a = b for all b ∈ S and a ∈ S.

c. For all b ∈ S, b ∗ b = a so each element is self inverse.

d. b ∗ (c ∗ d) = c, but (b ∗ c) ∗ d = a. 

2.

a. There is no identity element since a ∗ e = a   and  e ∗ a = e  for every a ∈ ℤ. So it is not a 
group.

b.  1 * 1 =  √
______

  1 2  +  1 2    =    
 √
__

 ,2   ∉ ℚ, so it is not closed. So it is not a group.

c. There is no identity element, since a ∘ e = a gives 2(a + e) = a, so e = –  a __ 2  . So there is no 
identify element. So it is not a group.

d.  (a, b) ∗ (e1, e2) = (ae1 – be2, ae1 + be2) = (a, b)    ae1 – be2 = a  and ae1 + be2 = b  gives

 (e1, e2) =  (   b + a _____ 2a  ,   b – a ____ 2b   ) . 
 The identity element must be independent of a and b, so the identity element does not exist. 

So (S, *) is not a group.

e. It is not a group, since for a = 1 and b = –1 a ∗ b cannot be calculated. It is not a binary 
operation.

f.  There is no identity element, e, such that min(a, e) = min(e, a) = a, so it is not a group. 

g. 00 cannot be evaluated, so it is not a group.
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h. There is no identity element, so it is not a group.

i. It is not closed. The scalar product is a real number not a vector.

j.  It is closed. The vector product of two vectors is a vector as well. There is no identity element, 
so it is not a group.

Exercise 5.4

1. a ∗ x = a ∗ y    Given. 

a-1∗ (a ∗ x) = a-1∗ (a ∗ y) Since it is a group every element has an inverse a-1.

(a-1∗ a) ∗ x = (a-1∗ a) ∗ y Applying associativity.

e ∗ x =e ∗ y   Applying the inverse property.

x = y.      Applying the identity property

2.  Step 1: 

y ∗ a = b   Given

(y ∗ a)∗ a–1 = b∗ a–1  Since {S, ∗} is a group, a has an inverse a–1. Right multiply by a-1

y ∗ (a∗ a-1) = b ∗ a–1  Using associativity.

y ∗ e = b ∗ a–1   Applying inverse property.

y = b ∗ a–1   Applying identity property. From closure, y exists.

Step 2: 

Let us assume that there are two different values of y, y1 and y2 for which y ∗ a = b with y1 ≠ y2. 
Since they both equal b, y1 ∗ a = y2 ∗ a now applying the right cancellation law, y1=y2 which is a 
contradiction. So y is unique.
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Exercise 5.5

1. 3 ∗ 3 = 9; so we need a = 9;

×10 1 3 7 9

1 1 3 7 9

3 3 9 1 7

7 7 1 9 3

9 9 7 3 1
 With a = 9, S is closed.

 1 is the identity element. 

 3-1 = 7, 7-1 = 3, 9 is self inverse 

 9 is order 2, since it is self inverse. 3² = 9, 3³ = 7, 34 = 1 and 7² = 9, 7³ = 3, 74 = 1, so 3 and 7 
are order 4.

 Yes, since it is symmetric about the main diagonal, it is Abelian.

2. If a ∗ c = c ∗ b = then right multiplying by c–1 and using associativity,

 a ∗ (c ∗ c–1) = c ∗ b ∗ c–1. Hence a ∗ e = c ∗ b ∗ c–1 and a = c ∗ b ∗ c–1.

3.    1 _ 2  (1 + i √
__

 3  ) = cis   π __ 3   .   ( cis   π __ 3   )  n , for n = 2, 3, 4, 5 and 6 gives

    1 _ 2  (1 + i √
__

 3  ), –1,    1 _ 2  (–1 – i √
__

 3  ) ,    1 _ 2  (1 – i √
__

 3  ), 1.

4.  Both are equal to a–2.

5)  a. Not a group since 1 ∗ 7 = 7 and 3 ∗ 7 = 7, so it does not have the Latin Square Property.

b. 
Closure ∗ 2 4 8 10 14 16

2 4 8 16 2 10 14

4 8 16 14 4 2 10

8 16 14 10 8 4 2

10 2 4 8 10 14 16

14 10 2 4 14 16 8

16 14 10 2 16 8 4

It is closed.
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Identity element e = 10

Inverses 2–1 = 14, 14–1 = 2, 4–1 = 16, 16–1 = 4, 8–1 = 8, 10–1 = 10.

Associativity Holds

 So it is a group.

c.

Closure ∗ 0 2 3 4 5 6

0 0 2 3 4 5 6

2 2 0 6 5 4 3

3 3 6 4 2 0 5

4 4 5 2 6 3 0

5 5 4 0 3 6 2

6 6 3 5 0 2 4

It is closed.

Identity element e = 0
Inverses 2–1 = 2, 5–1 = 3, 3–1 = 5, 4–1 = 6, 6–1 = 4.
Associativity Holds

 So it is a group.

d.

Closure

It is closed.

If 0 ≤ x, y < 1 then   
x + y

 _____ 1 + xy  , < 1 since 

1 –   
x + y

 _____ 1 + xy  , =   
1 + xy – x – y

 ___________ 1 + xy   =   
(y – 1)(x – 1)

 ___________ 1 + xy   > 0,

and x ∗ y =   
x + y

 _____ 1 + xy    > 0.

Identity element

  x + e _____ 1 + xe   = x =   e + x _____ ex + 1  

so x + e = x + x2e, so e = x2 e, so e = 0 for every x and 0 is in the 
given interval.

Check: x =   0 + x ______ 0·x + 1   = x =   x + 0 _______ x·0 + 1   
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Inverses

  x +  x –1  _______ 
1 + x· x –1 

   = 0, where 0 ≤ x < 1.

x +  x –1  = 0 

 x –1  = – x,  –1< –x  ≤ 0, so there is no inverse.

So it is not a group.

e)

Closure

It is closed.

If x and y are non-zero real numbers then their product is non-
zero as well.

Identity element
x•e = 2xe = x and e•x = 2ex = x for every x ∈ ℝ\{0}.

e =   1 __ 2    which is non-zero.  

Inverses
x • x–1 = 2×x× x–1 =   1 __ 2   = x–1 • x for every x ∈ ℝ\{0}.

x–1 =   1 ___ 4x   which is non-zero.

Associativity Multiplication on real numbers is associative.

So it is a group.

6.

Closure
It is closed. If a, b ∈ S then a×b – a – b + 2 = a(b – 1) – (b – 1) + 1

= (a – 1)(b – 1) + 1 ≠ 1.

Identity 
element

e = 2 since (e – 1)(a – 1) + 1 = a ⇒ (e – 1)(a – 1) = a – 1, where a ≠ 1 
⇒ e – 1 = 1 ⇒e = 2 ≠ 1 

Inverses

a–1 =   a _____ a – 1   since a ∗ a–1 = a×a–1 – a – a–1 + 2 = 2 = a–1•a – a–1– a +2, 

a–1(a – 1) = a, If a ≠ 1 then a–1=   a _____ a – 1   and   a _____ a – 1   ≠ 1. Unless 1 is excluded 
a-1 is not defined for all a.
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Associativity

Show that (a ∗ b) ∗ c) = a ∗ (b ∗ c) for every a, b, c ∈ ℝ\{1}.

(a ∗ b) ∗ c) = (ab – a – b + 2)c – ab + a + b – c – 2+ 2

= abc – ac – bc + 2c – ab + a + b – c

= abc – ac – bc – ab + a + b + c 

a ∗ (b ∗ c) = a(bc – b – c + 2) – a – bc + b + c – 2 + 2 

= (abc – ab – ac + 2a) – a – bc + b + c – 2 + 2 

= abc – ab – ac – bc + a + b + c.

Abelian

Show that a ∗ b = b ∗ a for every a, b, c ∈ ℝ\{1}.

a * b = a×b – a – b + 2 = 

b * a= b a – b – a + 2.  So it is Abelian.

7.

Closure

  1 + 2m ______ 1 + 2n   •   1 + 2k ______ 1 + 2s   =   1 + 2(k + m +2km)  ________________  1 + 2(n + s +2ns)

  If m, n, k, s ∈ ℤ then k + m + 2km, 1 + 2(n + s + 2nl) ∈ ℤ. 

Can n + s + 2ns = –½? No, because if we let n + s + 2ns = –½, 
solving for n (or s) gives n(1 + 2s) = –½ – s = –½(1 + 2s) which 
gives n = –½. So, it is closed.

Identity element
e = 1, where 0 ∈ ℤ and 0 ≠–½.

  1 + 2•0 ______ 1 + 2•0   where 0 ∈ ℤ and 0 ≠–½.

Inverses If   1 + 2m ______ 1 + 2n  , X = 1 , m, n ∈ ℤ, , then X =   1 + 2n ______ 1 + 2m  
 
∈ S.

So it is a group.

8.

Closure It is closed. If a, c ≠ 0 then ac ≠ 0.
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Identity element

(a, b) ∗ (c, d) = (ac, bc + d ) = (a, b) = (c, d) ∗ (a, b).

a = ac and b = bc + d

c = 1, b = b + d

c = 1, d = 0.

So e = (1, 0) ∈ S.

Inverses

(x, y)∗(a, b) = (a, b)∗ (x, y) = (1, 0), where a≠0,

therefore a×x = 1 and b×x + y = 0.

Hence b×  1 __ a   + y = 0.

x =   1 __ a,   y = –  b __ a  .

(a, b)-1 =  (   1 __ a,  , –  b __ a   )  ∈ S since =   1 __ a   ≠ 0.

Associativity

[(a, b) ∗ (c, d)] ∗ (e, f ) = (ac, bc + d) ∗ (e, f ) = (ace, bce + de + f )

(a, b) ∗ [(c, d) ∗ (e, f )] = (a, b ) ∗ (ce, de + f) = (ace, bce + de + f )

for every (a, b), (c, d), (e, f) ∈ S.

Not Abelian. Counter example:

(1, 2) ∗ (3, 4) = (3, 2×3 + 4) = (3, 10) but

(3, 4) ∗(1, 2) = (3, 4×1 + 2) = (3, 6)

9.  a.

∗ I A B C

I I A B C

A A B C I

B B C I A

C C I A B

It is closed, e = I, C–1 = A, A–1 = C, B–1 = B, I–1 = I. Associativity is known.  

b. i. B ∗ (C ∗ A) = B*I = B,

    ii. (A ∗ B) ∗ ( B∗ C) = C ∗ A = I.
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IB Exam Type Problems

1.        a.  P1: (b−1ab)1 = b−1a1b,  so P1 is true
  Assume Pk: (b−1ab)k = b−1akb
 Therefore (b−1ab)k+1 
 = (b−1ab)k(b−1ab) 
 = (b−1akb)(b−1ab)   Using the assumption
 = b−1ak e ab  Using associativity and the inverse property
 = b−1ak ab  Using the identity property
 = b−1a k+1  b 
 So Pk → Pk+1 and P1 is true. So Pn is true for every n ∈ ℤ+ by mathematical induction.

 b, EITHER

 By the definition of the inverse h−1h = e; so we must show (b−1ab)(b−1a−1b) = e
 (b−1ab)(b−1a−1b) 
 = b−1a(bb−1)a−1b   Using associativity
 = b−1aea−1b 
 = b−1aa−1b 
 = b−1eb 
 = b−1b
 = e.
 OR
 (b−1ab)−1 

 = (ab)−1(b−1)−1  Using the reversal rule
 = b−1a−1(b−1)−1  Using the reversal rule
 = b−1a−1b.
c Let n = –m, where m ∈ ℤ+.

 So (b−1ab)n = (b−1ab)−m = (b−1ab)−1m= ((b−1ab)−1 )m

 =(b−1a−1b)m  Using part b

 =(b−1(a−1)mb  Using part a

 = b−1a−1mb

 = b−1anb

 for all negative integers n.

2.   a. b ∗ a = b + a – 1 = a ∗ b, for all a, b ∈ ℝ, so yes, commutative.

 b.  Closure: ℝ is closed under addition and subtraction so closed.
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 Associativity: (a ∗ b) ∗ c = (a + b −1) ∗ c = a + b − 1 + c – 1 =  a + b + c – 2

 a ∗ (b ∗ c) = a ∗ (b + c – 1) = a + (b + c – 1) – 1 = a + b + c – 2.

 So associative, for all a, b ∈ ℝ.

 Identity: e ∗ a = a ∗ e = a + e −1 = a, so e = 1 ∈ ℝ, so an identity element exists

 Inverse: a ∗ a−1 = e   so 

 a + a−1 − 1 = 1 so

 a−1 = 2 – a ∈ ℝ, so each element has an inverse element.

 The 4 conditions for a group are met, so {ℝ, ∗} is a group.

3.  a. Closure:,  ( a + b   
 √

__
 5   )  ×  ( c + d   

 √
__

 5   )  = ac +5bd + (bc + ad)   
 √

__
 5   where a, b, c, d ∈ ℚ and

  a² + b² ≠0 and c² + d² ≠0 

 ac + 5bd ∈ ℚ, bc + ad ∈ ℚ. From a2 + b2 ≠ 0 a and b cannot both be zero, equally c and d 
cannot both be zero therefore ac + 5bd and bc + ad cannot both be zero, so

 (ac +5bd)² + (bc + ad)² ≠ 0. So it is closed.

 The identity is 1 ∈ S. 1 = 1 + 0 √
__

 5   and 1² + 0² ≠ 0.

 Inverse:   a + b √
__

 5   _______ 
a + b √

__
 5  
  = 1 so a + b √

__
 5   =   1 _______ 

a + b √
__

 5  
   ∈ S since 

   1 _______ 
a + b √

__
 5  
      ( a – b   

 √
__

 5   )  _________ 
 ( a – b   

 √
__

 5   ) 
   =   a – b √

__
 5   _______ 

 a 2  – 5 b 2 
   =   a _______ 

 a 2  – 5 b 2 
   +   –b _______ 

 a 2  – 5 b 2 
    √

__
 5     a _______ 
 a 2  – 5 b 2 

   ∈핈

   –b _______ 
 a 2  – 5 b 2 

   ∈ 핈 if a, b ∈ 핈.     (   a _______ 
 a 2  – 5 b 2 

   )  2  +   (   –b _______ 
 a 2  – 5 b 2 

   )  2  ≠ 0 since a, b ≠ 0.

 Since a and b cannot both be zero a² – 5b² ≠0, unless   a __ b   =  √
__

 5  , which is not possible since a, 
b ∈ ℚ. So the inverse exists.

 Associative: multiplication on ℝ is associative.

 The 4 conditions for a group are met, so it is a group.

(b)  if x, y ∈ ℝ then   x __ y   =  √
__

 5  , would be possible, so an inverse element would not exist.

4.  If the order of an element is 1, it is e. Since ee = ee, e commutes.

 If the order of elements a and b is 2, a² = b² = (ab)² = e.

 So a, b and ab are all self inverses; i.e. a = a–1, etc.
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 (ab)² = e

 ab ab = e

 a (abab) b = aeb  left multiplying by a and right multiplying by b

 ebae = ab     

 ba = ab.

 OR

 ab = (ab)–1

 ab = b–1a–1   using the reversal rule

 ab = ba.

5.  Closure: for a, b ∈ ℝ\{0},   a __ b   ∈ ℝ\{0}, so closed.

 Associativity:   
(  1 _ 2  )

 ___ 3   =   1 __ 6    ≠   1 ___ 
(  2 _ 3  )

   =   3 __ 2  , so not associative.

 There is no identity, because   a __ 1   = a but   1 __ a   ≠ a, for all a ∈ R\{0}.

 Inverse: Since there is no identity, there cannot be an inverse.

6.  Given a × a = a. Since it is a group a–1

 
must exist. So multiply both sides by a–1

 
, 

 giving a–1 × a × a = a–1 × a so e × a = e so a = e.

7.  a * b cannot be a , since that would mean b = e, which is not true. Similarly a * b cannot be 
b. So a * b = either e or c.

 If a ∗ b = e, a = b–1 and b = a–1. So b ∗ a * b ∗ a = b ∗ e ∗ a, which gives

 e = b * a. So b ∗  a = b ∗ a.

 If a ∗ b = c, then by the reasoning above b ∗ a = c also, so b ∗ a = b ∗ a.

8.  a.  x ∗ y = y ∗ x²,   given

 x ∗ y ∗ y = y ∗ x² ∗ y,   right multiplying by y

 x ∗ e = y ∗ x² ∗ y,   using y² = e and  associativity 

 x = y ∗ (x² ∗ y).    using associativity

b.  x ∗ y = y ∗ x²   given

 x² ∗ x ∗ y ∗ x = x² ∗ y ∗ x² ∗ x, left multiplying by x² and right multiplying by x

 y ∗ x = x² ∗ y.   using x³ = e 
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c.  (x∗y)² 

 = x∗(y∗x)∗y 

 = x∗( x²∗y)∗y 

 = x³∗y²      using y∗x = x²∗y

 = e∗e = e.

Exercise 6.1

1. i. 

+5 0 1 2 3 4

0 0 1 2 3 4

1 1 2 3 4 0

2 2 3 4 0 1

3 3 4 0 1 2

4 4 0 1 2 3

ii. 

×5 0 1 2 3 4

0 0 0 0 0 0

1 0 1 2 3 4

2 0 2 4 1 3

3 0 3 1 4 2

4 0 4 3 2 1

ii. a. x + 2 = 1, add  2–1  = 3, giving x = 4.

b.  4x = 3, x = 2. By trial and error. Note that the cancellation law (multiplying both sides 
by the “inverse”) does not always work because {ℤ5, ×5} is not a group.

c.  3x + 4 = 2.  Add  4–1= 1, 3x = 3, x = 1.

d.  4x + 3 = 0.  Add  3–1  = 2, 4x = 2, x = 3.

e.  3(x + 1) = 0, x + 1 = 0. Add 1–1  = 4, x = 4.
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f.  4x = 2x + 1. Add 3x, 2x = 1, x = 3.

2.  i. {ℤp\{0}, ×p}, where p is a prime forms a group. 7 is prime.

{ℤn, +n} forms a group for n ∈ ℕ, n ≥ 2. The cancellation laws hold for all groups.

ii, For {ℤ7, +7} 0-1 = 0, otherwise a–1 = 7 – a.

For {ℤ7\{0}, ×7}    1 –1 = 1, 2–1 = 4, 3–1 = 5, 4–1 = 2, 5–1 = 3, 6–1 = 6.

iii.

a.  x + 4 = 3, add  4–1  = 3, x = 6.

b.  2x = 5, multiply by 2–1  = 4, x = 6

c.  3x + 2 = 3, add  2–1  = 5, 3x = 1, multiply by 3–1  = 5, x = 5.

d.  5x + 6 = 0, add  6–1  = 1, 5x = 1, multiply by 5–1  = 3, x = 3.

e.  6x + 3 = 5, add  3–1  = 4, 6x = 2, multiply by 6–1  = 6, x = 5.

f.  4x + 1 = 2x, add 5x, since 2–1  = 5, 2x + 1 = 0, add  1–1  = 6, 2x = 6, multiply by 2–1  = 4, 
x = 3.

3. a. The Cayley table is:

+3 0 1 2

0 0 1 2

1 1 2 0

2 2 0 1

 So it is closed. The identity element, I = 0, inverses: 0–1 = 0,  1–1 = 2, 2–1 = 1, it is 
associative, because Rem (a + b) = Rem (Rem (a) + Rem(b)).

b.  0 +3 1 = 0 and 0 +3 2 = 0, so it does not have the Latin Square Property, so it is not a 
group.

c.  0 +3 1 = 0 and 0 +3 2 = 0, so it does not have the Latin Square Property, so it is not a 
group.

 So it is closed, identity element: I = 1, inverses: 1–1 = 1, 2–1 = 2.

 Associativity: Yes. So it is a group.

d. It is not closed: 2 ×4 2= 0, so it is not a group. 

e. The Cayley table is:
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×10 2 4 6 8

2 4 8 2 6

4 8 6 4 2

6 2 4 6 8

8 6 2 8 4

It is closed, identity element: I = 6, inverses: 2–1 = 8, 8–1 = 2, 6–1 = 6, 4–1 = 4. Associativity: 
Yes, it holds, so it is a group.

f. The Cayley table is:

×12 1 5 7 11

1 1 5 7 11

5 5 1 11 7

7 7 11 1 5

11 11 7 5 1

It is closed, identity element: I = 1, inverses: 1–1 = 1, 5–1 = 5, 7–1 = 7, 11–1 = 11. Associativity: 
Yes, it holds. So it is a group.

g.  The Cayley table is:

×15 1 2 4 8

1 1 2 4 8

2 2 4 8 1

4 4 8 1 2

8 8 1 2 4

It is closed, identity element: I = 1, inverses: 1–1 = 1, 2–1 = 8, 8–1 = 2, 4–1 = 4. Associativity: 
Yes, it holds. So it is a group.
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h. The Cayley table is:

×15 3 6 9 12

3 9 3 12 6

6 3 6 9 12

9 12 9 6 3

12 6 12 3 9

It is closed. Identity element: I = 6. Inverses: 3–1 = 12, 12–1 = 3, 6–1 = 6, 9–1 = 9. Associativity: 
Yes, it holds. So it is a group.

i. The Cayley table is:

×11 1 3 4 5 9

1 1 3 4 5 9

3 3 9 1 4 5

4 4 1 5 9 3

5 5 4 9 3 1

9 9 5 3 1 4

 It is closed. Identity element: I = 1. Inverses: 3–1 = 4, 4–1 = 3, 5–1 = 9, 9–1 = 5. Associativity: 
Yes, it holds. So it is a group.

j.  The Cayley table is:

×14 2 4 6 8 10 12

2 4 8 12 2 6 10

4 8 2 10 4 12 6

6 12 10 8 6 4 2

8 2 4 6 8 10 12

10 6 12 4 10 2 8

12 10 6 2 12 8 4

 It is closed. Identity element: I = 8. Inverses: 2–1 = 4, 4–1 = 2, 6–1 = 6, 8–1 = 8, 10–1 = 12, 
12–1 = 10. Associativity: Yes, it holds. So it is a group.
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k. The Cayley table is:

×14 1 3 5 7 9 11 13

1 1 3 5 7 9 11 13

3 3 9 1 7 13 5 11

5 5 1 11 7 3 13 9

7 7 7 7 7 7 7 7

9 9 13 3 7 11 1 5

11 11 5 13 7 1 9 3

13 13 11 9 7 5 3 1

 From the 7 row and column, it is not a group. 

l. The Cayley table is:

×14 1 3 5 9 11 13

1 1 3 5 9 11 13

3 3 9 1 13 5 11

5 5 1 11 3 13 9

9 9 13 3 11 1 5

11 11 5 13 1 9 3

13 13 11 9 5 3 1

 It is closed. Identity element: I = 1. Inverses: 3–1 = 5, 5–1 = 3, 9–1 = 11, 11–1 = 9, 13–1 = 
13. Associativity: Yes, it holds. So it is a group.

m. There is no identity element, so it is not a group.

n.  {ℤn, +n} forms an Abelian group for n ∈ ℕ, n ≥ 2. So it is a group.
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o.  The Cayley table is:

×9 1 2 4 5 7 8

1 1 2 4 5 7 8

2 2 4 8 1 5 7

4 4 8 7 2 1 5

5 5 1 2 7 8 4

7 7 5 1 8 4 2

8 8 7 5 4 2 1

It is closed. Identity element: I = 1. Inverses: 2–1 = 5, 5–1 = 2, 4–1 = 7, 7–1 = 4, 8 is self inverse. 
Associativity: Yes, it holds. So it is a group.

Exercise 6.2

1.

∘ e f g h

e e f g h

f f e h g

g g h e f

h h g f e

 It is closed.

 From the Cayley table e is the identity element.

 Inverses: e–1 = e, f–1 = f, h–1 = h, g–1 = g.

 Composition of functions is associative, therefore it holds for a subset as well.

 The Cayley table is symmetric about the main diagonal, so it is an Abelian group.

2. 

∘ e f g h

e e f g h

f f e h g

g g h f e

h h g e f
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 It is closed. 

 From the Cayley table e is the identity element.

 Inverses: e–1 = e, f –1 = f, h–1 = g, g–1 = h.

 Composition of functions is associative, therefore it holds for a subset as well.

 The Cayley table is symmetric about the main diagonal, so it is an Abelian group.

3.  It is not closed, because p∘f  =   x ____ x – 1   . So it is not a group.

4. 

∘ f g h

f f g h

g g h f

h h f g

 It is closed.

 From the Cayley table f is the identity element.

 Inverses: f –1 = f, g–1 = h, h–1 = g.

 Composition of functions is associative, therefore it holds for a subset as well.

 The Cayley table is symmetric about the main diagonal.

 So it is an Abelian group.

5. 

∘ a b c d

a b a d c

b a b c d

c d c b a

d c d a b

 It is closed.

 From the Cayley table b is the identity element.

 Inverses: a–1 = a, b–1 = b, c–1 = c, d–1 = d.

 Composition of functions is associative therefore it holds for a subset as well.
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The Cayley table is symmetric about the main diagonal, so it is an Abelian group.

6. It is not closed, because f∘g =   1 – x _____ x + 1  . So it is not a group.

7. 

∘ e n g k m h

e e n g k m h

n n e k g h m

g g m e h n k

k k h n m e g

m m g h e k n

h h k m n g e

 It is closed.

 From the Cayley table e is the identity element.

 Inverses: e–1 = e, n–1 = n, g–1 = g, k–1 = m, m–1 = k, h–1 = h. 

 Composition of functions is associative therefore it holds for a subset as well.

 So it is a group.

 h∘k = g ≠ k∘h = n. So it is not Abelian.

Exercise 6.3

1.     

a.  (  1   3    2   4    3   1    4   2  )  
b.  (  1   2    2   1    3   4    4   3  ) 
c.  (  1   2    2   4    3   1    4   3  ) 
d.  (  1   4    2   1    3   2    4   3  ) 

2.  

a.  (  1   2    2   3    3   4    4   1  ) 
b.  (  1   4    2   3    3   2    4   1  ) 
c.  (  1   1    2   2    3   3    4   4  ) ,
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d.   (  1   1    2   3    3   2    4   4  ) 
3. a.  i.

 p–1 =  (  1   1    2   3    3   2    4   4  ) 
 q–1 =  (  1   4    2   2    3   1    4   3  ) 
 q–1 p–1 =  (  1   4    2   1    3   2    4   3  ) 
 pq =   (  1   2    2   3    3   4    4   1  ) 
 (pq)–1 =  (  1   4    2   1    3   2    4   3  ) 
Indeed, both equal:  (  1   4    2   1    3   2    4   3  ) 
ii.   (  1   4    2   1    3   2    4   3  )  (  1   2    2   3    3   4    4   1  )  =  (  1   1    2   2    3   3    4   4  ) 
       (  1   2    2   3    3   4    4   1  )  (  1   4    2   1    3   2    4   3  ) =  (  1   1    2   2    3   3    4   4  ) 
Indeed, both equal:  (  1   4    2   1    3   2    4   3  ) 
b.

i. x = qp–1 =  (  1   3    2   2    3   4    4   1  )   (  1   3    2   2    3   4    4   1  )  =  (  1   3    2   4    3   2    4   1  ) 
ii. x = pq–1 =  (  1   1    2   3    3   2    4   4  )   (  1   4    2   2    3   1    4   3  )  =  (  1   4    2   3    3   1    4   2  ) 
iii. x = p–1q =  (  1   1    2   3    3   2    4   4  )   (  1   3    2   2    3   4    4   1  )  =  (  1   2    2   3    3   4    4   1  ) 
iv. x = q–1p =  (  1   4    2   2    3   1    4   3  )   (  1   1    2   3    3   2    4   4  )  =  (  1   4    2   1    3   2    4   3  ) 

4.  a. Make a Cayley table:

W X Y Z

W W X Y Z

X X W Z Y

Y Y Z W X

Z Z Y X W

Closure: Yes.

Associative: Composition of permutations is associative.

Identity: W.

Inverse: X, Y and Z are self inverse.
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It is a group because it satisfies the four group properties.

It is Abelian because it is symmetric about the main axis.

X, Y and Z are of order 2, W is of order 1.

b. Make a Cayley table:

W X Y Z

W W X Y Z

X X Y Z W

Y Y Z W X

Z Z W X Y

Closure: Yes.

Associative: Composition of permutations is associative.

Identity: W.

Inverse: X–1 = Z, Z–1 = X, Y is self inverse. 

It is a group because it satisfies the four group properties.

It is Abelian, because it is symmetric about the main axis.

X and Z are of order 4, Y is of order 2.

5.  a.  i. x    ii. y    iii. e     iv. x      v. y     vi. x     vii. e     viii. s

    b  i. a = er–1 = s ii. a = s–1r = s iii. a = ys–1 = z iv. a = zy–1 = s

Exercise 6.4

1. a.  (1 5) (2 3)  b. (1 2 3 4 5)   c. (1 5) (2 3 4)

2. a.   (  1   2    2   3    3   1  )   b.   (  1   2    2   3    3   1  )   c.   (  1   2    2   3    3   1    4   6    5   5    6   4  )   d)   (  1   2    2   3    3   4    4   6    5   5    6   1  )  
 e.   (  1   2    2   1    3   4    4   6    5   5    6   3  )  
3. p = (476) (235). For p² each number is moved by two positions in the cycle for p, so 

p² = (467) (253). For p–1 each cycle in p must be reversed, so p–1 = (467) (253).

4. p² = (1 3 2), p³ = (1) (2) (3) = Id, pk = (1) (2) (3) ... (k) = Id

5.  pq =  (  1   2    2   3    3   1    4   5    5   4  ) , qp =  (  1   2    2   3    3   1    4   5    5   4  ) . Yes.
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6. pq =  (  1   2    2   3    3   5    4   4    5   6    6   1  )  qp = =  (  1   2    2   5    3   1    4   4    5   6    6   3  ) . No.

7.  a. (1 3 5),   b. (1 2) (4 5),  c. (1 2 3 4 5),  d. (1 2 3 4 5),  e. (1 4).

8. a. 3! = 6  b. (1), (12), (13), (23), (123), (132)

c. Let’s do a few (working right to left)

(12)(13): 1→3, 2→1, 3→1→2 so (12)(13) = (132)

(123) (23): 1→2, 2→3→1, 3→2→3, so (123) (23) = (12)(3) = (12)

 

(1) (12) (13) (23) (123) (132)

(1) (1) (12) (13) (23) (123) (132)

(12) (12) (1) (132) (123) (23) (13)

(13) (13) (123) (1) (132) (12) (23)

(23) (23) (132) (123) (1) (13) (12)

(123) (123) (13) (23) (12) (132) (1)

(132) (132) (23) (12) (13) (1) (123)

Exercise 6.5

1. a. a (b c) = a rl = b

b. a r1 (b r2) = a (r1 a) = a c = r2

c. (r1)
2 r2 = r1 (r1 r2) = r1 r0 = r1

d. r1
–1 (r2

–l)2 = r2 r1
2 = r2 r2 = r1

e. a r2 a
–1 = a r2 a = a b = r1

2.  a. y = r1
–1c = r2 c = a

b. y = r1 r2 
–1 = r1 r1= r2

c. y = a–1 r2 c
–1 = a r2 c = a a = r0

3. a. a (b d) = a rA = c

b. (a r1) ( b r2) = c a = r3

c. (r1)² r2 = r2 r2 = r0

d. r1
–1 (r2

–1)² = r3 r2² = r3 r0 = r3
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e. (d r2) a–1 = c a = r3

4.  a. y = r1 
–1c = b

b. y = r1 r2
–1 = r1 r2 = r3

c. y = a–1 r3 d
–1 = a r3  d =  r0

5. a.

A

C

D

B

⇒

C

A

B

D

A

C

D

B

⇒

C

A

D

B

i. ii.

r2 c

 so i.  r2  ii)  c

b.  There are 4! = 24 permutations, but only 8 symmetries so no. 

 For example  (  A   A    B   B    C   D    D   C   )  is not possible.

6.
notation symmetry

r0 rotation about O through 0° – do nothing
r1 rotation about O through 120° anti-clockwise
r2 rotation about O through 240° anti-clockwise

∗ r0 r1 r2

r0 r0 r1 r2

r1 r1 r2 r0

r2 r2 r0 r1

 It is closed. r0 is the identity element. r0
–1 = r0, r1

–1 = r2, r2
–1 = r1. It is commutative. So it is a 

group. It is an Abelian group since the Cayley table has a line of symmetry along the leading 
diagonal. 

7.
notation symmetry

r0 rotation about O through 0° – do nothing
r1 rotation about O through 90° anti-clockwise
r2 rotation about O through 180° anti-clockwise
r3 rotation about O through 270° anti-clockwise
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∗ r0 r1 r2 r3

r0 r0 r1 r2 r3

r1 r1 r2 r3 r0

r2 r2 r3 r0 r1

r3 r3 r0 r1 r2

 It is closed. r0 is the identity element. r1
–1 = r3, r3

1 = r1. The operations r2 and r0 are self inverse. 
So it is a group. It is an Abelian group since the Cayley table has a line of symmetry along the 
leading diagonal, that is, it is commutative. . 

8. The operation is composition of symmetries. Because there are 10 symmetries, it is too 
tiresome to construct a Cayley table.

 First we check closure. The composition of two rotations is one of the rotations r0 to r4. 

 The composition of a reflection and a rotation is one of the reflections a to f. We check one 
example.

a

b

c

f

d

O

a

f

d

b

c

O

b

a

f

c

d

O

For example, a re�ection 
about the vertical axis a 
produces

Followed by an anti-
clockwise rotation of 72° 
produces 

Which is a re�ection of 
the original shape about d.

You may use the fact that every rotation is a composition of two reflections with lines of 
symmetry intersecting at the centre of rotation. The angle enclosed by the lines must be half 
the angle of rotation.

The composition of two of the reflections a to f is one of the rotations r0 to r4.
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a

b

c

f

d

O

a

f

d

b

c

O

c

d

f

b

a

O

For example a re�ection of 
the original state about the 
vertical axis a produces

�en a re�ection about b 
produces 

Which is an anti-
clockwise rotation of 
4×72°of the original 

 You may use the fact that the composition of two reflections with intersecting lines of 
symmetry is a rotation centred on the intersection of the lines. The angle of rotation is 
double the angle between the lines.

 We certainly do not want to check associativity case by case for the 1000 cases. Fortunately 
this is another example of composition of functions which is associative. 

 The identity element is r0 a rotation of 0°. 

 Reflections are self inverses. r1 and r4 are inverses. r2 and r3 are inverses. 

9. The set is the set of all rotations of Rubik’s Cube. The group operation is function composition, 
that is, chaining rotations. The identity operation is doing nothing. For any rotation the 
inverse is rotating it backwards. 

10. b. We can rotate 120° or 240° about a line running from each vertex to the centre of the 
opposite face for 8 rotations. We can rotate about a line through the midpoint of an edge and 
its opposite vertex for 3 rotations and we can do nothing for a total of 12 rotations.1 There 
are also reflections in a plane through one edge and the opposite midpoint.

Exercise 7.1

1.  a. The Cayley table is:

+3 0 1 2

0 0 1 2

1 1 2 0

2 2 0 1

 0 is the identity element. 0 cannot be the generator since it has an order equal to 1.
1  Symmetries in 3D objects is not in the IB syllabus.
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 11 = 1, 12 = 2, 13 = 0, 21 = 2, 22 = 1, 23 = 0. Therefore 1 and 2 have order 3 and are generators. 

 It is cyclic, since it has generators. 

 Alternately since it is a group of prime order, it must be cyclic. 

b. The Cayley table is:

+6 0 1 2 3 4 5

0 0 1 2 3 4 5

1 1 2 3 4 5 0

2 2 3 4 5 0 1

3 3 4 5 0 1 2

4 4 5 0 1 2 3

5 5 0 1 2 3 4

 0 cannot be the generator since it has an order equal to 1.

 11 = 1, 12 = 2, 13 = 3, 14 = 4, 15 = 5, 16 = 0,

 21 = 2, 22 = 4, 23 = 0,

 31 = 3, 32 = 0, 

 41 = 4, 42 = 2, 43 = 0,

 51 = 5, 52 = 4, 53 = 3, 54 = 2, 55 = 1, 56 = 0.

 2 and 4 are order 3. 3 is order 2. 1 and 5 are order 6 and so are generators. It is cyclic since it 
has a generator.

 Alternatively, since 1 does not have order 1, 2 or 3, by Lagrange’s theorem it must have order 
6 and be a generator. Since 5 = 1–1, it must be a generator too. 

c. The Cayley table is: 

×5 1 2 3 4

1 1 2 3 4

2 2 4 1 3

3 3 1 4 2

4 4 3 2 1

 1 cannot be the generator since it has an order equal to 1.
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 21 = 2, 22 = 4, 23 = 3, 24 = 1,

 31 = 3, 32 = 4, 33 = 2, 34 = 1, 

 41 = 4, 42 = 1. 

 4 has order 2. 2 and 3 have order 4 and are generators. It is cyclic, since it has generators.

 Alternatively, since 2 and 3 do not have order 1 or 2, by Lagrange’s theorem they must have 
order 4 and be generators.

d.  The Cayley table is:

×7 1 2 3 4 5 6

1 1 2 3 4 5 6

2 2 4 6 1 3 5

3 3 6 2 5 1 4

4 4 1 5 2 6 3

5 5 3 1 6 4 2

6 6 5 4 3 2 1

 1 cannot be the generator since it has an order equal to 1.

 22 = 4, 23 = 1,

 32 = 2, 33 = 6, 34 = 4, 35 = 5, 36 = 1,

 42 = 2, 43 = 1,

 52 = 4, 53 = 6, 54 = 2, 55 = 3, 56 = 1. 

 62 = 1.

 2 and 4 are order 3. 6 is order 2. 

 3 and 5 are order 6 and so generators. It is cyclic, since it has generators.

 Alternatively, since 3 does not have order 1, 2 or 3, by Lagrange’s theorem it must have order 
6 and be a generator. Since 5 = 3-1, it must be a generator too. 
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e. The Cayley table is

+8 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7

1 1 2 3 4 5 6 7 0

2 2 3 4 5 6 7 0 1

3 3 4 5 6 7 0 1 2

4 4 5 6 7 0 1 2 3

5 5 6 7 0 1 2 3 4

6 6 7 0 1 2 3 4 5

7 7 0 1 2 3 4 5 6

 2 and 6 have order 4. 4 has order 2. 1, 3, 5, and 7 have order 8 and so are generators. It is 
cyclic, since it has generators.

 Alternatively, since 1 and 3 do not have order 1, 2 or 4, by Lagrange’s theorem it must have 
order 8 and be a generator. Since 5 = 3–1, and 7 = 1–1, they must be a generator too. 

 Note that since 1² = 2 ≠ 0, it’s not order 2. From Lagrange’s theorem elements must be order 
1, 2, 4 or 8. So check 14 = (1²)² = 2² = 4 ≠ 0. So from Lagrange’s theorem 1 is order 8.

f. The Cayley table is:
 

×14 2 4 6 8 10 12

2 4 8 12 2 6 10

4 8 2 10 4 12 6

6 12 10 8 6 4 2

8 2 4 6 8 10 12

10 6 12 4 10 2 8

12 10 6 2 12 8 4

 8 is the identity element. 8 cannot be the generator since it has an order equal to 1.

 22 = 4, 23 = 8,

 42 = 2, 43 = 8,

 62 = 8,

 102 = 2, 103 = 6, 104 = 4, 105 = 12, 106 = 8,
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 122 = 4, 123 = 6, 124 = 2, 125 = 10, 126 = 8.

 2 and 4 are order 3. 6 is order 2, 10 and 12 are order 6 and so generators. It is cyclic, since it 
has generators.

 Alternatively, since 10 does not have order 1, 2 or 3, by Lagrange’s theorem it must have 
order 6 and be a generator. Since 12 = 10-1, it must be a generator too. 

g. The Cayley table is:

×15 3 6 9 12

3 9 3 12 6

6 3 6 9 12

9 12 9 6 3

12 6 12 3 9

 6 is the identity element. 6 cannot be the generator since it has an order equal to 1.

 32 = 9, 33 = 12, 34 = 6,

 92 = 6,

 122 = 9, 123 = 3, 124 = 6.

 9 is order 2, 3 and 12 are order 4 and so generators. It is cyclic, since it has generators.

h. The Cayley table is:

×10 2 4 6 8

2 4 8 2 6

4 8 6 4 2

6 2 4 6 8

8 6 2 8 4

 6 is the identity element. 6 cannot be the generator since it has an order equal to 1.

 22 = 4, 23 = 8, 24 = 6,

 42 = 6,

 82 = 4, 83 = 2, 84 = 6.

 4 is order 2, 2 and 8 are order 4 and so generators. It is cyclic, since it has generators.
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i.   The Cayley table is:

×10 1 3 7 9

1 1 3 7 9

3 3 9 1 7

7 7 1 9 3

9 9 7 3 1

 1 is the identity element. 1 cannot be the generator since it has an order equal to 1. 9 has 
order 2. 3 and 7 have order 4 and so are generators. It is cyclic, since it has generators.

j. The Cayley table is:

×8 1 3 5 7

1 1 3 5 7

3 3 1 7 5

5 5 7 1 3

7 7 5 3 1

 1 is the identity element. 1 cannot be the generator since it has an order equal to 1.

 32 = 1, 52 = 1, 72 = 1, so 3, 5 and 7 have order 2.

 It is not cyclic, since it has no generator, that is, it has no element of order 4. 

k. The Cayley table is:

×12 1 5 7 11

1 1 5 7 11

5 5 1 11 7

7 7 11 1 5

11 11 7 5 1

 1 is the identity element. 1 cannot be the generator since it has an order equal to 1.

 5, 7 and 11 are all order 2. So there are no generators. It is not cyclic, since it has no generators.
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l. The Cayley table is:

×15 1 2 4 8

1 1 2 4 8

2 2 4 8 1

4 4 8 1 2

8 8 1 2 4

 1 is the identity element. 1 cannot be the generator since it has an order equal to 1.

 4 is order 2.

 2 and 8 are order 4 and so generators. It is cyclic, since it has generators.

m. The Cayley table is:

×11 1 3 4 5 9

1 1 3 4 5 9

3 3 9 1 4 5

4 4 1 5 9 3

5 5 4 9 3 1

9 9 5 3 1 4

 1 is the identity element. 1 cannot be the generator since it has an order equal to 1. 3, 4, 5 and 
9 are all order 5, so generators. It is cyclic, since it has generators.

 Alternately since it is a group of prime order, it must be cyclic. 

n. {1, 2, 4, 5, 7, 8} under ́9.

 The Cayley table is:

×9 1 2 4 5 7 8

1 1 2 4 5 7 8

2 2 4 8 1 5 7

4 4 8 7 2 1 5

5 5 1 2 7 8 4

7 7 5 1 8 4 2

8 8 7 5 4 2 1
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 1 is order 1. 8 is order 2. 4, 7 are order 3.

 2 and 5 are order 6 and so are generators. It is cyclic, since it has generators.

 Alternatively, since 2 does not have order 1, 2 or 3, by Lagrange’s theorem it must have order 
6 and be a generator. Since 5 = 2-1, it must be a generator too. 

o.  e is order 1. a, b and c are order 2. There are no elements of order 4, so it is not cyclic.

p. Each element is order 2, except r0 (order 2). There are no elements of order 4, so it is not 
cyclic. 

q. r0 is order 1. r2, a, b c and d are order 2. r3 and r1 are order 4. There are no elements of order 
8, so it is not cyclic. 

r. The Cayley table is:

× 1 i –1 –i

1 1 i –1 –i

i i –1 –i 1

–1 –1 –i 1 i

–i –i 1 i –1

1 is the identity element. 1 cannot be the generator since it has an order equal to 1.

(–1)2 = 1. -1 is not a generator.

i1 = i, i2 = –1, i3 = –i, i4 = 1. (–i)1 = –i, (–i)2 = –1, (–i)3 = i, (–i)4 = 1. Therefore i and –i are 
generators. It is cyclic, since it has generators.

s.  The Cayley table is:

∘ e n g k m h

e e n g k m h

n n e m h g k

g g k e n h m

k k g h m e n

m m h n e k g

h h m k g n e

 n, g and h have order 2, m and k have order 3.

 It is not cyclic, since it has no generator, that is, it has no element of order 6. 
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t. Call a rotation about the centre of n × 60°  rn, where n = 0, 1, 2, 3, 4, 5.

 r0 cannot be the generator since it has an order equal to 1.

 r1
2 = r2, r1

3 = r3, r1
4 = r4, r1

5 = r5, r1
6 = r0,

 r2
2 = r4, r2

3 = r0,

 r3
2 = r0,

 r4
2 = r2, r4

3 = r0,

 r5
2 = r4, r5

3 = r3, r5
4 = r2, r5

5 = r1, r5
6 = r0.

 Therefore r1 and r5 are the generators. It is cyclic, since it has generators.

2. e has order 1. Since the group is cyclic with order 8, xk = xk mod 8 and x8 = x0 = e.

 Since 3, 5 and 7 have no common factor > 1 with 8 are not factors of 8, the lowest power of 
x3, x5, x7 that equals x0 is the 8th power. Therefore x, x3, x5, x7 generate the group.

 Since 2 × 4 (mod 8) = 0 and 6 × 4 (mod 8) = 0, x2 and  x6 have order 4.

 Since 4 × 2 (mod 8) = 0, x4 has order 2. 

3. e has order 1. The group is cyclic with order 7. Since 7 is prime, the lowest power of a, a2, a3, 
a4, a5, a6 that equals a0 = e is the 7th power, so they all generate the group.

4. a. i. (ab)2 = b4 gives abab = bbbb. The right cancelation law gives aba = b3. 

   ii. a2 = (ab)2 gives aa = abab. The left cancelation law gives a = bab. 

 b. i. a³b ≠ e, because if it did, then a4b = ae, so b = a, which is not true. So a³b is not 
order 1. 

 ii. (a³b)² = (a³b)(a³b) = a²(aba)a²b = b4(b³)b4b = b4b4b4= a²a²a² = e a² = a² ≠ e. So a³b is not 
order 2.

 (a³b)³ = (a³b)² (a³b) = a²a³b = eab = ab ≠ e, because if it did, then (ab)² = e, so abab = e, so 
b4 = e, so a² = e which is false. So a³b is not order 3.

 (a³b)4 = a²a² = a4 = e. So a³b is order 4.

 ii. Similarly b3a is of order 4.  

5. The elements of C are all of the form xp, where p is a positive integer. Since x is of order n, xn 
= e,where e is the identity. There must be integers q and r such that p = nq + r, where q ≥ 0, 
0 ≤ r ≤ n–1.

 If r = 0, xp = (xn)q = eq = e.

 If r ≠ 0, xp = xnq + r =(xn)qxr = exr = xr.
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 Thus, for all values of p, xp is an element of the set {e, x, x², x³, ..., xn-–1}.

 Now we must show that they are all distinct. We assume that there are at least two elements 
that are not distinct. If xs = xt, where 0 < t < s ≤ n, then xs – t = e. Therefore s – t is a multiple 
of n, but this is impossible if s and r are both less than or equal to n, so they are all distinct. 

6. a. The solutions of z4 = 1 are 1, –1, i, –i. But 1 is the identity and –1 has order 2. i and –i have 
order 4.

 b. The solutions of z3 = 1 are 1, –  1 __ 2   +    √
__

 3   ___ 2  i, –  1 __ 2   –    √
__

 3   ___ 2  i. 

 But 1 is the identity. –  1 __ 2   +    √
__

 3   ___ 2  i and –  1 __ 2   –    √
__

 3   ___ 2  i have order 3. 

Exercise 7.2

1. The Cayley table is  

∆ X Y Z ∅

X ∅ Z Y X

Y Z ∅ X Y

Z Y X ∅ Z

∅ X Y Z ∅

 It is closed. The identity element, e = ∅. Each element is a self inverse.

 ∆ is associative on sets therefore it is associative on a subset as well.

 The subgroups are {∅}, {∅, X}, {∅, Y}, {∅, Z}, since they are closed.

2. The Cayley table is  

×18 2 4 8 10 14 16

2 4 8 16 2 10 14

4 8 16 14 4 2 10

8 16 14 10 8 4 2

10 2 4 8 10 14 16

14 10 2 4 14 16 8

16 14 10 2 16 8 4

 It is closed. The identity element, e = 10.

 Inverses: 2–1 = 14, 14–1 = 2, 4–1 = 16, 16–1 = 4, 8–1 = 8, 
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 Associativity: Yes.

 So it is a group.

 Proper subgroups are {10, 8}, {10, 4, 16}.

Exercise 7.3 

1.  0H = {m | m = 4k, k ∈ ℤ} = H.  1H = {m | m = 4k + 1, k ∈ ℤ}. 

 2H = {m | m = 4k + 2, k ∈ ℤ}.   3H = {m | m = 4k + 3, k ∈ ℤ}. 

 4H = 0H, 5H = 1H, etc. When taking negative integers you get the cosets above: –1H = 3H, 
–2H = 2H, etc.

 Therefore we have 4 cosets: {m | m = 4k, k ∈ ℤ}, {m | m = 4k +1, k ∈ ℤ}, {m | m = 4k +2, k ∈ ℤ}, 
{m | m = 4k +3, k ∈ ℤ}. Notice that the 4 sets are disjoint and their union is the whole group. 
Therefore the 4 cosets form a partition of ℤ.

2. Take one element from the group and add it to all elements of the subgroup {0, 4, 8}.

 Adding 0 to H gives 0H = {0, 4, 8}.

 Adding 1 to H gives 1H = {1, 5, 9}. 

 Adding 2 gives 2H={2, 4, 6}. Adding 3 to H gives 3H= {3, 9, 11}.

 You can see that 4H = 0H, 5H = 1H, etc. Therefore there are no new cosets formed when the 
rest of the elements of the group are used.

 We have 4 cosets which form a partition of ℤ12.

3. It is false. In D4 r1H = {r1r0, r1d} = {r1, a} = aH = {ar0, ad} = {a, r1}.

 But H r1 = {r0r1, dr1} = {r1, b} ≠ Ha = {r0a, da} = {a, r3}.

4. Hb = {hb | h ∈ H}. b = eb ∈ Hb, since e ∈ H. Since Ha = Hb, b ∈ Ha.

5.   1H =  { 1, cis   2π ___ 3  , cis   4π ___ 3   }   cis   π __ 3   H =  { cis   π __ 3  , –1, cis   5π ___ 3   }  
 cis   2π ___ 3   H =  { cis   2π ___ 3  , cis   4π ___ 3  , 1 }  –1 H =  { –1, cis   5π ___ 3  , cis   π __ 3   } 

  

 
cis   4π ___ 3   H = cis   π __ 3    { cis   4π ___ 3  , 1, cis   2π ___ 3   }  cis   5π ___ 3   H =   { cis   5π ___ 3  , cis   π __ 3  , –1 } 

6.  aH  = {ar0, aa}   = {a, r0}  bH  = {br0, ba}  = {b, r1}

 r1H = {r1r0, r1a} = {r1, b}  r0H = {r0r0, r0a} = {r0, a}
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Exercise 7.4

1.    a.  {r3}, {r1, r2, r3, }, {r3, a}, {r3, b}, {r3, c}

b. {l}, {1, –l}, {1, –1, i, –i} c.  {l}, {1,6} {1, 2, 4}  d.  {6}, {6, 9}

2. a  Yes. It is closed; the sum of two even integers is even. 0 is included. Every element has 
its inverse.

b. No, since it is not closed; the sum of two odd integers is even.

c. No, since no element but zero has an inverse. 

d. Yes, since it is closed, the sum of two integers divisible by 3 is divisible by 3. 0 is 
included. Every element has its inverse.

3.   a. No, because only 1 has an inverse. b. Yes, because it has the 4 properties.

c. No, because only 1 has an inverse.

4.   a. e is order l, x, y and z are order 2, r and s are order 3.

b. z ∘ s = y, s ∘ z = x  c. {e, r, s}

d. r and s are both generators. e. {e, x}, {e, y}, {e, z} and S itself.

5. a. (ab)(ab) = e
 a(ab)(ab)b = aeb  left multiplying by a and right multiplying by b
 (aa)ba(bb) = aeb  using associativity
 ba = ab   using g² = e and the identity property
b. From the given information the Cayley table must be:

* e a b 

e e a b

a a e

b b e

c. Yes as below

* e a b c

e e a b c

a a e c b

b b c e a

c c b a e

6. {e}, {e, a}, {e, b}, {e, c}, {e, a, b, c}.
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IB Exam Type Problems

1. Since S is cyclic, there is an a ∈ S such that a generates S. We will do a proof by contradiction. 
We assume that (finite) S is not of prime order; we assume |S| = m × n, m, n ∈ ℤ, m, n ≠ 1. If 
so, am generates a subgroup of order n, but this is a contradiction, since G has no non-trivial 
proper subgroups, so S must be of prime order. Now suppose S is an infinite cyclic group. 
If so, a² (along with e) will generate an infinite proper subgroup, but this is a contradiction, 
since G has no non-trivial proper subgroups, so S must be of finite order. 

2. Find the identity element, e. x ∗ e = x = x + e + a x e, which gives e = 0. Find an element b 
which is self-inverse. b ∗ b = e = 0 = b + b + abb, which gives  0 = (2 + ab) b. Since b is not 
the identity, element b = -2/a. So the subgroup is {0, –2/a}.

3.  (S, ∗) must contain an element, a, which is different from e, its identity element. The 
order of element a is equal to the order n of the subgroup it generates. By Lagrange’s 
theorem n must be a factor of p. Since p is prime, either n = 1 or n = p. Since a ≠ e, n ≠ 1 
and therefore n = p. Since the order of a is p, a generates (S, ∗), which is therefore cyclic.

4. A cyclic group has a generator, a such that all elements of the group = an, for some n ∈ ℤ.

5. Since S is cyclic, it has at least one generator, a. That is am = e. Multiplying both sides of this 
equation by (a-1)m gives am ∘ (a-1)m = e ∘ (a-1)m, which gives e = (a-1)m. Therefore a-1 is also 
order m, so it too is a generator. But what if a is self-inverse? Then m = 2 and S is order 
2, which is a contradiction. So S must have more than one generator.

6. The sixth roots are z0 = 1, z1 = cis   π __ 3   , z2 = cis   2π ___ 3   , z3 = –1, z4 = cis   4π ___ 3   z5 = cis   5π ___ 3  . The Cayley 
table is:

× z0 z1 z2 z3 z4 z5 

z0 z0 z1 z2 z3 z4 z5 

z1 z1 z2 z3 z4 z5 z0

z2 z2 z3 z4 z5 z0 z1 

z3 z3 z4 z5 z0 z1 z2

z4 z4 z5 z0 z1 z2 z3 

z5 z5 z0 z1 z2 z3 z4 

 Closure: From the table S is closed.

 Associativity: Multiplication of complex numbers is associative.

 Identity: z0.

 Inverses: z1
–1 = z5, z2

–1 = z4, z4
–1 = z2, z3

–1 = z3

  cis   π __ 3   and cis   5π ___ 3   are generators. Therefore S is cyclic.
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7.  a.  i.   a is order 2, b is order 2, c is order 2, e is order 1. 

 ii. a is order 4, b is order 4, c is order 2, e is order 1.

 b.   i. {e, a}, {e, b}, {e, c}.   ii. {e, c}.

Exercise 8.1

1. {ℤ4, +4} is a group. ℤ4 under subtraction modulo 4 is not a group, for example it’s not closed, 
so it cannot be isomorphic to {ℤ4, +4}.

2. Determine which of the following groups of order four are isomorphic. 

a.  The operation table is.

+4 0 1 2 3

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 3 0 1 2

b.  The operation table is.

∘ e f g h

e e f g h

f f e h g

g g h f e

h h g e f

c. The operation table is.

∗ r0 a b r1

r0 r0 a b r1

a a r0 r1 b

b b r1 r0 a

r1 r1 b a r0
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d. The operation table is.

×10 1 3 7 9

1 1 3 7 9

3 3 9 1 7

7 7 1 9 3

9 9 7 3 1

e.  The operation table is.

∘ a b c d

a b a d c

b a b c d

c d c b a

d c d a b

 All elements of groups c and e except the identity element have order 2, groups c and e are 
isomorphic. f: r1 → d, r0 → b, a → a, b → c.

 Groups a, b and d have the identity element, one element of order 2 and 2 elements of order 
4, so groups a, b and d are isomorphic.  

 Possible bijections are: k(0) = e, k(2) = f, k(1) = g, k(3) = h 

 and l(e) = l, l(f) = g, l(g) = 3, l(h) = 7. 

 Remember that once we saw that an element was not of order 1 or 2 (in a group of order 4) 
it must be of order 4, because 3 is not a factor of 4 and because the Latin Square property 
requires every element to have an order less than or equal to the order of the group.

3. The operation table for S is:

∗ a b r1 r0

a r0 r1 b a

b r1 r0 a b

r1 b a r0 r1

r0 a b r1 r0
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The operation table for T is:

×8 1 3 5 7

1 1 3 5 7

3 3 1 7 5

5 5 7 1 3

7 7 5 3 1

 All elements of groups S and T except the identity element have order 2.

 The isomorphism f : S → T is r0 ↦ 1, r1 ↦ 3, a ↦ 5, b ↦ 7. (Except that it must be r0 ↦ 1, all 
other possible mapping are also correct.) So groups S and T are isomorphic.

4. The Cayley table for T is.

+5 1 2 3 4

1 1 2 3 4

2 2 4 1 3

3 3 1 4 2

4 4 3 2 1

 The identity element is 1. 4 has order 2. 2 and 3 have order 4.

 The Cayley table for H is:

×10 2 4 6 8

2 4 8 2 6

4 8 6 4 2

6 2 4 6 8

8 6 2 8 4

 The identity element is 6. 4 has order 2. 2 and 8 have order 4.

 The two possible isomorphisms are: f: T → H: 1↦6, 4↦4, 2↦2, 3↦8 and g: T → H: 1↦6, 4↦4, 
2↦8, 3↦2.
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5. The Cayley table for G1 is:   

+6 0 1 2 3 4 5

0 0 1 2 3 4 5

1 1 2 3 4 5 0

2 2 3 4 5 0 1

3 3 4 5 0 1 2

4 4 5 0 1 2 3

5 5 0 1 2 3 4

 The identity element is 0. 3 has order 2. 2 and 4 have order 3. 1 and 5 have order 6.

 The Cayley table for G2 is: 

×7 1 2 3 4 5 6

1 1 2 3 4 5 6

2 2 4 6 1 3 5

3 3 6 2 5 1 4

4 4 1 5 2 6 3

5 5 3 1 6 4 2

6 6 5 4 3 2 1

 The identity element is 1. 6 has order 2. 2 and 4 have order 3. 3 and 5 have order 6.

 The Cayley table for G3 is

∘ r0 r1 r2 a b c

r0 r0 r1 r2 a b c

r1 r1 r2 r0 c a b

r2 r2 r0 r1 b c a

a a b c r0 r1 r2

b b c a r2 r0 r1

c c a b r1 r2 r0

 The identity element is r0. a, b and c have order 2. r1 and r2 have order 3. 
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 Since G1 and G2 have elements with the same orders they are isomorphic. 

 One possible bijection is: f: G1 → G2, 0 → 1, 3 → 6, 2 → 2, 4 → 4, 5 → 5, 1 → 3.

 But G3 has elements with different orders, so it is not isomorphic to G1 or G2.

6. a. Both are of infinite order. 

 b. ln (1) = 0, 

 c. ln (1/a) = – ln (a).

7. The Cayley table for the symmetry group of the equilateral triangle is 

∘ r0 r1 r2 a b c

r0 r0 r1 r2 a b c

r1 r1 r2 r0 c a b

r2 r2 r0 r1 b c a

a a b c r0 r1 r2

b b c a r2 r0 r1

c c a b r1 r2 r0

 The identity element is r0. a, b and c have order 2. r1 and r2 have order 3.

 The cyclic group of order 6 has elements e, a, a2, a3, a4, a5, where a6 = e. So a and its inverse 
a5 have order 6 that is they are generators, a2 and its inverse a4 have order 3. a3 has order 2.

 Since symmetry group of the equilateral triangle has no generator and the cyclic group of 
order 6 does, they are not isomorphic. 

8. The Cayley table for G, the cube roots of unity is

× 1  e   
2iπ ___ 3    e   

4iπ ___ 3   

1 1  e   
2iπ ___ 3    e   

4iπ ___ 3   

 e   
2iπ ___ 3    e   

2iπ ___ 3    e   
4iπ ___ 3   1

 e   
4iπ ___ 3    e   

4iπ ___ 3   1  e   
2iπ ___ 3   

 1 is the identity,  e   
2iπ ___ 3    and  e   

4iπ ___ 3    are inverses and have order 3.

 See answer for Q 9, 10.
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The Cayley table for H, {{1, 2, 4}, ×7} is

×7 1 2 4

1 1 2 4

2 2 4 1

4 4 1 2

The isomorphism f: G → H is 1 → 1, e 
  2π ___ 
3

  
  → 2,  e 

  4π ___ 
3

  
  → 4.

1 is the identity, 2 and 4 are inverses and have order 3.

9. The fifth roots of unity are ω0 = 1, ω1 =  e   
i2π ___ 5   , ω2 =  e   

i4π ___ 5   , ω3 =  e   
i6π ___ 5   , ω4 =  e   

i8π ___ 5   .

The Cayley table for G, the fifth roots of unity under multiplication is:

× 1 ω1 ω2 ω3 ω4

1 1 ω1 ω2 ω3 ω4

ω1 ω1 ω2 ω3 ω4 1

ω2 ω2 ω3 ω4 1 ω1

ω3 ω3 ω4 1 ω1 ω2

ω4 ω4 1 ω1 ω2 ω3

1 is the identity. ω1 and ω4 are inverses and order 5, ω2 and ω3 are inverses and order 5. Since 5, 
the order of the group, is prime, elements must either be order 1 or 5.

The Cayley table for {ℤ5, +5} is:

+5 0 1 2 3 4

0 0 1 2 3 4

1 1 2 3 4 0

2 2 3 4 0 1

3 3 4 0 1 2

4 4 0 1 2 3

 0 is the identity. 1 and 4 are inverses and order 5, 2 and 3 are inverses and order 5. 

 The isomorphism f: {ℤ5, +5} → G is a ↦ ωa.

 We must show that f(a +5 b) = f(a) × f(b). 

 LHS = ωa+5b.
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 RHS = ωa × ωb = ωa + 5
 b, because  e i(2πk+θ)  =  e iθ  , k ∈ ℤ .

10. The isomorphism is f : ℤ → 2ℤ. Now we need to prove f(a + b) = f(a) + f(b). LHS = 2(a + b). 
RHS = 2a + 2b. LHS = RHS.

11. In both {ℝ\{0}, ×} and {ℂ\{0}, ×} the element 1 has order 1 and the element -1 has order 2. 
In {ℝ\{0}, ×} all other elements have infinite order, that is, there is no m ∈ ℤ such that am = 1. 
In {ℂ\{0}, ×} there are two elements, i and –i, which have order 4. Since {ℝ\{0}, ×} has no 
elements of order 4, it cannot be isomorphic to {ℂ\{0}, ×}.

12. The mapping is given. We must prove f(x⊗y) = f(x)∘f(y).

 In this case ⊗ =  = ∗.

 LHS = b∗(x∗y)∗b–1. 

 RHS = (b ∗ x ∗ b–1) ∗ (b ∗ y ∗ b–1) 

 = b ∗ x ∗ b–1 ∗ b ∗ y ∗ b–1

  = b ∗ x ∗ e ∗ y ∗ b–1 

 = LHS.   

13. The rhombus.

14. The Cayley table for the rotations and reflections of a square is:

∗ r0 r1 r2 r3 a b c d

r0 r0 r1 r2 r3 a b c d

r1 r1 r2 r3 r0 c d b a

r2 r2 r3 r0 r1 b a d c

r3 r3 r0 r1 r2 d c a b

a a d b c r0 r2 r3 r1

b b c a d r2 r0 r1 r3

c c a d b r1 r3 r0 r2

d d b c a r3 r1 r2 r0

 The rotations alone form an isomorphic subgroup.
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15. The operation table for the symmetry group of the square is:

∗ r0 r1 r2 r3 a b c d

r0 r0 r1 r2 r3 a b c d

r1 r1 r2 r3 r0 c d b a

r2 r2 r3 r0 r1 b a d c

r3 r3 r0 r1 r2 d c a b

a a d b c r0 r2 r3 r1

b b c a d r2 r0 r1 r3

c c a d b r1 r3 r0 r2

d d b c a r3 r1 r2 r0

One subgroup is {r0, r1, r2, r3}.

∗ r0 r1 r2 r3

r0 r0 r1 r2 r3

r1 r1 r2 r3 r0

r2 r2 r3 r0 r1

r3 r3 r0 r1 r2

The other subgroups are {r0, r2, a, b}

∗ r0 r2 a b and ∗ r0 r2 c d

r0 r0 r2 a b r0 r0 r2 c d

r2 r2 r0 b a r2 r2 r0 d c

a a b r0 r2 c c d r0 r2

b b a r2 r0 d d c r2 r0

 They are subgroups because they are subsets, from the tables they are closed. r0 is the identity 
and all elements are self-inverse except r1 and r3, which are inverses. They have r0 and r2 in 
common. Because it is the identity r0 commutes with all other elements of the whole group. 
By inspection of the table r2 commutes with all other elements of the whole group.
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IB Exam Type Problems
1. 1. Two groups {G, ∗} and {H, •} are isomorphic, if there exists a bijection f : G → H such that 

f(a ∗ b) = f(a) • f(b) for all a, b ∈ G. 

2. We must prove that f : {ℝ+, ×}→ {ℝ, +} is a bijection. Since f(x) is monotonically increasing 
f is an injection. Since the range of f(x) is ℝ, f is a surjection. Now we must prove f(a ∗ b) = 
f(a) • f(b) for all a, b ∈ ℝ+. 

 LHS = f(a × b) = ln (ab)

 RHS = f(a) + f(b) =  ln (a) + ln (b) = ln (ab)

 LHS = RHS. 

3.  a.      The table for S is 

∗ e f g h

e e f g h

f f e h g

g g h e f

h h g f e

The table for G is 

• 1 3 5 7

1 1 3 5 7

3 3 1 7 5

5 5 7 1 3

7 7 5 3 1

b. For S and G all elements except the identity are order 2. For H 6 is the identity, 9 has 
order 2 and 3 and 12 have order 4.

c. Since only H has elements of order 4 only H is cyclic. The generators are 3 and 12.

d. Since H has two elements of order 4 but for S and G all elements (except the identity) 
are order 2, H cannot be isomorphic to either S or G. S and G are isomorphic with the 
mapping: e ↦ 1, f ↦ 3, g ↦ 5, h ↦ 7, since e and 1 are order 1 and the rest are order 2 
and by inspection of the respective tables f(a ∗ b) = f(a) • f(b) for all a, b ∈ ℝ+.
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4. a.        The table for S is 

⨯ 1 i –1 –i

1 1 i –1 –i

i i –1 –i 1

–1 –1 –i 1 i

–i –i 1 i –1

The table for G is

∗ r0 r1 r2 r3

r0 r0 r1 r2 r3

r1 r1 r2 r3 r0

r2 r2 r3 r0 r1

r3 r3 r0 r1 r2

with rn being a rotation of 90° × n degrees anti-clockwise.

b. For S, 1 is the identity, –1 has order 2 i and –i have order 4. For G r0 is the identity, r2 
has order 2, r1 and r3 have order 4. For H, 6 is the identity, 4 has order 2, 2 and 8 have 
order 4.

c. S, G and H are all cyclic. 

 The generators are for S are i and –i, for G are r1 and r3. For H are 2 and 8.

d. f: S→ G, l → r0, –l → r2, i → r3, –i → r3. and g: G→ H, r0 → 6, r2 → 4, r1 → 2, r3 → 8. 

5.  a.

 Closure: (3a × 5b) × (3c × 5d ) = 3a+c × 5b+d with a + c and b + d ∈ ℤ, for all a, b, c, d ∈ 
ℤ.

 Associativity: multiplication of any subset of ℂ is associative.

Identity: 1 i.e. a = b = 0 is the identity.

Inverse: the inverse of 3a × 5b is 3-a × 5-b

b. The isomorphism is f : (3a × 5b) →  (  a   b   ) . We must show that f(x ∗ y) = f(x) • f(y) for all 
a, b ∈ ℤ. 

 LHS = f((3a × 5b) × (3c × 5d )) = f(3a+c × 5b+d) =  (  a + c    b + d  ) .
 RHS = f((3a × 5b)) + f((3c × 5d )) =  (  a   b   )  +  (  c   d  )  =  (  a + c    b + d  )  .



Mathematics HL Topic 8: Sets, Relations and Groups

71

Answers

 LHS = RHS

6. We must prove that f(eS) ∘ f(a) = f(a), for all a ∈ H.

 From isomorphism f(b) ∘ f(a) = f(b ∗ a), so f(eS) ∘ f(a) = f(eS ∗ a).

 Since eS is the identity element in S, eS ∗ a = a, so f(eS∗ a) = f(a), so f(eS) ∘ f(a) = f(a).

 The proof of f(a) ∘ f(eS) = f(a), is nearly identical, so is omitted.

7. i. G: 10 has order 1, 8 has order 2, 4 and 16 have order 3 and 2 and 14 have order 6.

 H: 0 has order 1, 2 has order 2, 4 and 6 have order 3 and 3 and 5 have order 6.

 I: 8 has order 1, 6 has order 2, 2 and 4 have order 3 and 10 and 12 have order 6.

 J: e has order 1, n, g and h have order 2, k and m have order 3.

 ii. G: {10, 8}, {10, 4, 16}

 H: {0, 2}, {0, 4, 6}

 I: {8, 6}, {8, 2, 4}

 J: {e, n}, {e, g}, {e, h}, {e, k, m}

 iii. G; H and I are isomorphic to each other. The identity elements map to each other. The 
elements with order 2 map to each other. The elements with order 3 map to each other. The 
elements with order 6 map to each other. 

 iv.  G; H and I are cyclic. The generators are the elements with order 6: G: 2 and 14; H: 3 and 
5, I: 10 and 1

Exercise 9.1

1. a. {+1, –1} is a group under multiplication. 

 We need to show that f(p ∗ q) = f(p) • f(q) for all p, q ∈ G. The product of two even permutations 
is even, the product of two odd permutations is even, and the product of an even and an odd 
is odd. 

p q LHS RHS

even even f(even) = +1 +1 × +1 = +1

even odd f(odd) = –1 +1 × –1 = –1

odd even f(odd) = –1 –1 × +1 = –1

odd odd f(even) = + 1 –1 × –1 = +1

 So LHS = RHS. Therefore it is a homomorphism,
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b. f is not injective. For example all even permutations, for example (1 2) (2 1), map to 1.

c. Since 1 is the identity element for {{1, –1}, ×} and since all even permutations map to 
1, the kernel is all even permutations.

2.  a. Yes, it is the trivial homomorphism.

b. No, it is not injective.

c. All of g ∈ G.

3.  a. Yes

b. Yes

c. {0}

4. a. No, it is not injective.

b. Yes.

c. {2πki with k ∈ ℤ}.

5.  a. f(a + b) = (a + b) (mod n) = a(mod n) +n b(mod n) = f(a) +n  f(b) so f is a homomorphism.   

b. No, because f(n) = f(2n) so f is not injective, but it is surjective.

c. All integers divisible by n.

6. a. f(a + b) = 2(a + b) = 2a + 2b = f(a) + f(b) so f is a homomorphism.  

b. But f is not surjective, since there is no integer n that satisfies f(n) = 3. 

 However f is injective, since f(n) = f(m) implies 2n = 2m which implies n = m. Not 
isomorphic.

c. {0}

IB Type Problems

1. We must prove that if f : G → H is an injective homomorphism, the kernel is eG.

 f(eG) = eH   A group isomorphism property.

 Assume the kernel includes another distinct element a.

 If so, f(a) = f(eG)  They must both equal eH.

 a =  eG   If f(x1) = f(x2), then x1 = x2, because f is injective
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 So our assumption is wrong and the kernel only includes eG.

2. We must prove that if for f : G → H the kernel is eG, then  f is an injective homomorphism.

 So we must prove that if f(x1) = f(x2), then x1 = x2.

 Assume f(x1) = f(x2).

 f(x1)∗ (f(x2))–1 = f(x2) ∗ f(x2)
–1 Right multiplying by  f(x2)

-1.

 f(x1)∗( f(x2))–1 = eH   The definition of the inverse.

 f(x1)∗ f(x2
–1) = eH   f(a–1) = f(a)–1.

 f(x1 ∘ x2
–1) = eH   f(x ⊗ y) = f(x) ∗ f(y).

 x1 ∘ x2
–1 ∈ ker f   Definition of ker f.

 x1 ∘ x2
–1 = eG   The kernel is trivial.

 x1 = x2    Definition of inverse.

3. First we give the homomorphism:

 f : G → H : {a, c} ↦ A and {b, d} ↦ B

 Now we show f(x ⊗ y) = f(x) ∗ f(y)

 There are 16 cases to show, so we need to find an economical way to write these.

 

The diagonal cases:

 f(a ⊗ a) = f(c ⊗ c) = f(a) = A; f(a) ∗ f(a) = f(c) ∗ f(c) = A ∗ A = A

 f(b ⊗ b) = f(d ⊗ d) = f(c) = A; f(b) ∗ f(b) = f(d) ∗ f(d) = B ∗ B = A.

 Since �  is commutative, we only need to do half of the non-diagonal cases.

 f(b ⊗ a) = f(d ⊗ c) = f(b) = B; f(b) ∗ f(a) = f(d) ∗ f(c) = B ∗ A = B.

 f(c ⊗ b) = f(d) = B;   f(c) ∗ f(b) = A ∗ B = B.

 f(d ⊗ a) = f(d) = B;   f(d) ∗ f(a) = B ∗ A = B.

 f(c ⊗ a) = f(c) = A;   f(c) ∗ f(a) = A ∗ A = A.

 f(d ⊗ b) = f(a) = A;  f(d) ∗ f(b) = B ∗ B = A.


